Cargando…
Functional trade-offs in cribellate silk mediated by spinning behavior
Web-building spiders are an extremely diverse predatory group due to their use of physiologically differentiated silk types in webs. Major shifts in silk functional properties are classically attributed to innovations in silk genes and protein expression. Here, we disentangle the effects of spinning...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591232/ https://www.ncbi.nlm.nih.gov/pubmed/31235797 http://dx.doi.org/10.1038/s41598-019-45552-x |
Sumario: | Web-building spiders are an extremely diverse predatory group due to their use of physiologically differentiated silk types in webs. Major shifts in silk functional properties are classically attributed to innovations in silk genes and protein expression. Here, we disentangle the effects of spinning behavior on silk performance of the earliest types of capture threads in spider webs for the first time. Progradungula otwayensis produces two variations of cribellate silk in webs: ladder lines are stereotypically combed with the calamistrum while supporting rail lines contain silk that is naturally uncombed, spun without the intervention of the legs. Combed cribellate silk is highly extensible and adhesive suggesting that the reserve warp and cribellate fibrils brings them into tension only near or after the underlying axial fibers are broken. In contrast, these three fiber components are largely aligned in the uncombed threads and deform as a single composite unit that is 5–10x stronger, but significantly less adhesive, allowing them to act as structural elements in the web. Our study reveals that cribellate silk can occupy a surprisingly diverse performance space, accessible through simple changes in spider behavior, which may have facilitated the impressive diversification of web architectures utilizing this ancient silk. |
---|