Cargando…

Uhlmann number in translational invariant systems

We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Throu...

Descripción completa

Detalles Bibliográficos
Autores principales: Leonforte, Luca, Valenti, Davide, Spagnolo, Bernardo, Carollo, Angelo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591291/
https://www.ncbi.nlm.nih.gov/pubmed/31235825
http://dx.doi.org/10.1038/s41598-019-45546-9
Descripción
Sumario:We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Through the linear response theory we link two geometrical quantities of the system, the mean Uhlmann curvature and the Uhlmann number, to directly measurable physical quantities, i.e. the dynamical susceptibility and the dynamical conductivity, respectively. In particular, we derive a non-zero temperature generalisation of the Thouless-Kohmoto-Nightingale-den Nijs formula.