Cargando…
Uhlmann number in translational invariant systems
We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Throu...
Autores principales: | Leonforte, Luca, Valenti, Davide, Spagnolo, Bernardo, Carollo, Angelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591291/ https://www.ncbi.nlm.nih.gov/pubmed/31235825 http://dx.doi.org/10.1038/s41598-019-45546-9 |
Ejemplares similares
-
Uhlmann curvature in dissipative phase transitions
por: Carollo, Angelo, et al.
Publicado: (2018) -
Quantum Correlation Based on Uhlmann Fidelity for Gaussian States
por: Liu, Liang, et al.
Publicado: (2018) -
Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System
por: Spagnolo, Bernardo, et al.
Publicado: (2018) -
Symmetric Logarithmic Derivative of Fermionic Gaussian States
por: Carollo, Angelo, et al.
Publicado: (2018) -
On invariants and the theory of numbers
por: Dickson, Leonard Eugene
Publicado: (1966)