Cargando…

Precipitation extremes and depth-duration-frequency under internal climate variability

Natural climate variability, captured through multiple initial condition ensembles, may be comparable to the variability caused by knowledge gaps in future emissions trajectories and in the physical science basis, especially at adaptation-relevant scales and projection horizons. The relations to cha...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhatia, Udit, Ganguly, Auroop Ratan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591321/
https://www.ncbi.nlm.nih.gov/pubmed/31235805
http://dx.doi.org/10.1038/s41598-019-45673-3
Descripción
Sumario:Natural climate variability, captured through multiple initial condition ensembles, may be comparable to the variability caused by knowledge gaps in future emissions trajectories and in the physical science basis, especially at adaptation-relevant scales and projection horizons. The relations to chaos theory, including sensitivity to initial conditions, have caused the resulting variability in projections to be viewed as the irreducible uncertainty component of climate. The multiplier effect of ensembles from emissions-trajectories, multiple-models and initial-conditions contribute to the challenge. We show that ignoring this variability results in underestimation of precipitation extremes return periods leading to maladaptation. However, we show that concatenating initial-condition ensembles results in reduction of hydroclimate uncertainty. We show how this reduced uncertainty in precipitation extremes percolates to adaptation-relevant-Depth-Duration Frequency curves. Hence, generation of additional initial condition ensembles therefore no longer needs to be viewed as an uncertainty explosion problem but as a solution that can lead to uncertainty reduction in assessment of extremes.