Cargando…
Objective and Automated Detection of Diffuse White Matter Abnormality in Preterm Infants Using Deep Convolutional Neural Networks
Diffuse white matter abnormality (DWMA), or diffuse excessive high signal intensity is observed in 50–80% of very preterm infants at term-equivalent age. It is subjectively defined as higher than normal signal intensity in periventricular and subcortical white matter in comparison to normal unmyelin...
Autores principales: | Li, Hailong, Parikh, Nehal A., Wang, Jinghua, Merhar, Stephanie, Chen, Ming, Parikh, Milan, Holland, Scott, He, Lili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591530/ https://www.ncbi.nlm.nih.gov/pubmed/31275101 http://dx.doi.org/10.3389/fnins.2019.00610 |
Ejemplares similares
-
Diffuse white matter abnormality in very preterm infants at term
reflects reduced brain network efficiency
por: Kline, Julia E., et al.
Publicado: (2021) -
A Semi-Supervised Graph Convolutional Network for Early Prediction of Motor Abnormalities in Very Preterm Infants
por: Li, Hailong, et al.
Publicado: (2023) -
Perinatal Clinical Antecedents of White Matter Microstructural Abnormalities on Diffusion Tensor Imaging in Extremely Preterm Infants
por: Pogribna, Ulana, et al.
Publicado: (2013) -
Atlas-Guided Quantification of White Matter Signal Abnormalities on Term-Equivalent Age MRI in Very Preterm Infants: Findings Predict Language and Cognitive Development at Two Years of Age
por: He, Lili, et al.
Publicado: (2013) -
Early Prediction of Cognitive Deficit in Very Preterm Infants Using Brain Structural Connectome With Transfer Learning Enhanced Deep Convolutional Neural Networks
por: Chen, Ming, et al.
Publicado: (2020)