Cargando…
NPCMF: Nearest Profile-based Collaborative Matrix Factorization method for predicting miRNA-disease associations
BACKGROUND: Predicting meaningful miRNA-disease associations (MDAs) is costly. Therefore, an increasing number of researchers are beginning to focus on methods to predict potential MDAs. Thus, prediction methods with improved accuracy are under development. An efficient computational method is propo...
Autores principales: | Gao, Ying-Lian, Cui, Zhen, Liu, Jin-Xing, Wang, Juan, Zheng, Chun-Hou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591872/ https://www.ncbi.nlm.nih.gov/pubmed/31234797 http://dx.doi.org/10.1186/s12859-019-2956-5 |
Ejemplares similares
-
MCCMF: collaborative matrix factorization based on matrix completion for predicting miRNA-disease associations
por: Wu, Tian-Ru, et al.
Publicado: (2020) -
RCMF: a robust collaborative matrix factorization method to predict miRNA-disease associations
por: Cui, Zhen, et al.
Publicado: (2019) -
Bipartite graph-based collaborative matrix factorization method for predicting miRNA-disease associations
por: Zhou, Feng, et al.
Publicado: (2021) -
Graph regularized L(2,1)-nonnegative matrix factorization for miRNA-disease association prediction
por: Gao, Zhen, et al.
Publicado: (2020) -
Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering
por: Nie, Ru, et al.
Publicado: (2021)