Cargando…

The evolution of theory of mind (ToM) within the evolution of cerebellar sequence detection in stone-tool making and language: implications for studies of higher-level cognitive functions in degenerative cerebellar atrophy

INTRODUCTION: Within the context of Clausi, Olivito, Lupo, Siciliano, Bozzali and Leggio’s (Cell Neurosci 12:510, 2019) insightful study of how prediction of theory of mind (ToM) is compromised in degenerative cerebellar atrophy, this article describes how prediction can also be understood as the ce...

Descripción completa

Detalles Bibliográficos
Autor principal: Vandervert, Larry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591877/
https://www.ncbi.nlm.nih.gov/pubmed/31293790
http://dx.doi.org/10.1186/s40673-019-0101-x
Descripción
Sumario:INTRODUCTION: Within the context of Clausi, Olivito, Lupo, Siciliano, Bozzali and Leggio’s (Cell Neurosci 12:510, 2019) insightful study of how prediction of theory of mind (ToM) is compromised in degenerative cerebellar atrophy, this article describes how prediction can also be understood as the cerebro-cerebellar system’s capacity to rapidly shift attention to manipulate cause-and-effect relationships embedded in language. METHOD: The evolution of the capacity of ToM is described within the evolution of stone-tool making, language, and the origin of the phonological loop in verbal working memory. Specifically, it is argued that this evolutionary framework offers a way to get further inside the prediction process by illuminating how sub-vocal speech evolved during stone-tool evolution due to its adaptive refinement of early human ability to manipulate and hold in memory progressively more detailed cause-and-effect relationships in the origin of verbal working memory. CONCLUSION: The addition of sub-vocal speech/cause-and-effect relationship to the analysis of prediction provides an evolutionary model of the mechanisms of ToM, which, in turn, brings forward additional cerebro-cerebellar mechanisms which can (1) further support Clausi, Olivito, Lupo et al’s findings and (2) shed light on additional mechanisms that might further clarify what might be behind cerebellar dysfunction in the construction of ToM. Problems encountered by cerebellar degenerative atrophy patients with the Faux pas test and Advanced ToM task with unexpected events may stem from a combination of an inability (1) of their cerebellar internal models to rapidly switch attention among cause-and-effect elements of the stories and (2) to extend cerebellar internal models to the prediction of the resulting similar but unexpected events. That is, with both (1) and (2) occurring at the same time, alternative meanings of causes and effects might be missed in both automatic and consciously manipulated sub-vocal verbal working memory. A method to measure sub-vocal speech in this context is suggested.