Cargando…

Conformational changes influence clogging behavior of micrometer-sized microgels in idealized multiple constrictions

Clogging of porous media by soft particles has become a subject of extensive research in the last years and the understanding of the clogging mechanisms is of great importance for process optimization. The rise in the utilization of microfluidic devices brought the possibility to simulate membrane f...

Descripción completa

Detalles Bibliográficos
Autores principales: Bouhid de Aguiar, Izabella, Meireles, Martine, Bouchoux, Antoine, Schroën, Karin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592940/
https://www.ncbi.nlm.nih.gov/pubmed/31239490
http://dx.doi.org/10.1038/s41598-019-45791-y
Descripción
Sumario:Clogging of porous media by soft particles has become a subject of extensive research in the last years and the understanding of the clogging mechanisms is of great importance for process optimization. The rise in the utilization of microfluidic devices brought the possibility to simulate membrane filtration and perform in situ observations of the pore clogging mechanisms with the aid of high speed cameras. In this work, we use microfluidic devices composed by an array of parallel channels to observe the clogging behavior of micrometer sized microgels. It is important to note that the microgels are larger than the pores/constrictions. We quantify the clog propensity in relation to the clogging position and particle size and find that the majority of the microgels clog at the first constriction independently of particle size and constriction entrance angle. We also quantify the variations in shape and volume (2D projection) of the microgels in relation to particle size and constriction entrance angle. We find that the degree of deformation increases with particle size and is dependent of constriction entrance angle, whereas, changes in volume do not depend on entrance angle.