Cargando…
Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways
A better understanding of essential cellular functions in pathogenic bacteria is important for the development of more effective antimicrobial agents. We performed a comprehensive identification of essential genes in Mycobacterium tuberculosis, the major causative agent of tuberculosis, using a comb...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593218/ https://www.ncbi.nlm.nih.gov/pubmed/31239393 http://dx.doi.org/10.1128/mSystems.00070-19 |
_version_ | 1783429999403991040 |
---|---|
author | Minato, Yusuke Gohl, Daryl M. Thiede, Joshua M. Chacón, Jeremy M. Harcombe, William R. Maruyama, Fumito Baughn, Anthony D. |
author_facet | Minato, Yusuke Gohl, Daryl M. Thiede, Joshua M. Chacón, Jeremy M. Harcombe, William R. Maruyama, Fumito Baughn, Anthony D. |
author_sort | Minato, Yusuke |
collection | PubMed |
description | A better understanding of essential cellular functions in pathogenic bacteria is important for the development of more effective antimicrobial agents. We performed a comprehensive identification of essential genes in Mycobacterium tuberculosis, the major causative agent of tuberculosis, using a combination of transposon insertion sequencing (Tn-seq) and comparative genomic analysis. To identify conditionally essential genes by Tn-seq, we used media with different nutrient compositions. Although many conditional gene essentialities were affected by the presence of relevant nutrient sources, we also found that the essentiality of genes in a subset of metabolic pathways was unaffected by metabolite availability. Comparative genomic analysis revealed that not all essential genes identified by Tn-seq were fully conserved within the M. tuberculosis complex, including some existing antitubercular drug target genes. In addition, we utilized an available M. tuberculosis genome-scale metabolic model, iSM810, to predict M. tuberculosis gene essentiality in silico. Comparing the sets of essential genes experimentally identified by Tn-seq to those predicted in silico reveals the capabilities and limitations of gene essentiality predictions, highlighting the complexity of M. tuberculosis essential metabolic functions. This study provides a promising platform to study essential cellular functions in M. tuberculosis. IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of tuberculosis (TB), resulting in over 1 million deaths each year. TB therapy is challenging because it requires a minimum of 6 months of treatment with multiple drugs. Protracted treatment times and the emergent spread of drug-resistant M. tuberculosis necessitate the identification of novel targets for drug discovery to curb this global health threat. Essential functions, defined as those indispensable for growth and/or survival, are potential targets for new antimicrobial drugs. In this study, we aimed to define gene essentialities of M. tuberculosis on a genomewide scale to comprehensively identify potential targets for drug discovery. We utilized a combination of experimental (functional genomics) and in silico approaches (comparative genomics and flux balance analysis). Our functional genomics approach identified sets of genes whose essentiality was affected by nutrient availability. Comparative genomics revealed that not all essential genes were fully conserved within the M. tuberculosis complex. Comparing sets of essential genes identified by functional genomics to those predicted by flux balance analysis highlighted gaps in current knowledge regarding M. tuberculosis metabolic capabilities. Thus, our study identifies numerous potential antitubercular drug targets and provides a comprehensive picture of the complexity of M. tuberculosis essential cellular functions. |
format | Online Article Text |
id | pubmed-6593218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-65932182019-07-03 Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways Minato, Yusuke Gohl, Daryl M. Thiede, Joshua M. Chacón, Jeremy M. Harcombe, William R. Maruyama, Fumito Baughn, Anthony D. mSystems Research Article A better understanding of essential cellular functions in pathogenic bacteria is important for the development of more effective antimicrobial agents. We performed a comprehensive identification of essential genes in Mycobacterium tuberculosis, the major causative agent of tuberculosis, using a combination of transposon insertion sequencing (Tn-seq) and comparative genomic analysis. To identify conditionally essential genes by Tn-seq, we used media with different nutrient compositions. Although many conditional gene essentialities were affected by the presence of relevant nutrient sources, we also found that the essentiality of genes in a subset of metabolic pathways was unaffected by metabolite availability. Comparative genomic analysis revealed that not all essential genes identified by Tn-seq were fully conserved within the M. tuberculosis complex, including some existing antitubercular drug target genes. In addition, we utilized an available M. tuberculosis genome-scale metabolic model, iSM810, to predict M. tuberculosis gene essentiality in silico. Comparing the sets of essential genes experimentally identified by Tn-seq to those predicted in silico reveals the capabilities and limitations of gene essentiality predictions, highlighting the complexity of M. tuberculosis essential metabolic functions. This study provides a promising platform to study essential cellular functions in M. tuberculosis. IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of tuberculosis (TB), resulting in over 1 million deaths each year. TB therapy is challenging because it requires a minimum of 6 months of treatment with multiple drugs. Protracted treatment times and the emergent spread of drug-resistant M. tuberculosis necessitate the identification of novel targets for drug discovery to curb this global health threat. Essential functions, defined as those indispensable for growth and/or survival, are potential targets for new antimicrobial drugs. In this study, we aimed to define gene essentialities of M. tuberculosis on a genomewide scale to comprehensively identify potential targets for drug discovery. We utilized a combination of experimental (functional genomics) and in silico approaches (comparative genomics and flux balance analysis). Our functional genomics approach identified sets of genes whose essentiality was affected by nutrient availability. Comparative genomics revealed that not all essential genes were fully conserved within the M. tuberculosis complex. Comparing sets of essential genes identified by functional genomics to those predicted by flux balance analysis highlighted gaps in current knowledge regarding M. tuberculosis metabolic capabilities. Thus, our study identifies numerous potential antitubercular drug targets and provides a comprehensive picture of the complexity of M. tuberculosis essential cellular functions. American Society for Microbiology 2019-06-25 /pmc/articles/PMC6593218/ /pubmed/31239393 http://dx.doi.org/10.1128/mSystems.00070-19 Text en Copyright © 2019 Minato et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Minato, Yusuke Gohl, Daryl M. Thiede, Joshua M. Chacón, Jeremy M. Harcombe, William R. Maruyama, Fumito Baughn, Anthony D. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways |
title | Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways |
title_full | Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways |
title_fullStr | Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways |
title_full_unstemmed | Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways |
title_short | Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways |
title_sort | genomewide assessment of mycobacterium tuberculosis conditionally essential metabolic pathways |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593218/ https://www.ncbi.nlm.nih.gov/pubmed/31239393 http://dx.doi.org/10.1128/mSystems.00070-19 |
work_keys_str_mv | AT minatoyusuke genomewideassessmentofmycobacteriumtuberculosisconditionallyessentialmetabolicpathways AT gohldarylm genomewideassessmentofmycobacteriumtuberculosisconditionallyessentialmetabolicpathways AT thiedejoshuam genomewideassessmentofmycobacteriumtuberculosisconditionallyessentialmetabolicpathways AT chaconjeremym genomewideassessmentofmycobacteriumtuberculosisconditionallyessentialmetabolicpathways AT harcombewilliamr genomewideassessmentofmycobacteriumtuberculosisconditionallyessentialmetabolicpathways AT maruyamafumito genomewideassessmentofmycobacteriumtuberculosisconditionallyessentialmetabolicpathways AT baughnanthonyd genomewideassessmentofmycobacteriumtuberculosisconditionallyessentialmetabolicpathways |