Cargando…
Optimization of deacidification for concentrated grape juice
Excessive organic acids in grape juice will not only result in poor taste but will also cause turbidity and sedimentation. Tartaric acid exerts the most significant acidity among all organic acids in grape juice. In this study, we used tartaric acid as the main target and anion‐exchange resin to rem...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593384/ https://www.ncbi.nlm.nih.gov/pubmed/31289653 http://dx.doi.org/10.1002/fsn3.1037 |
Sumario: | Excessive organic acids in grape juice will not only result in poor taste but will also cause turbidity and sedimentation. Tartaric acid exerts the most significant acidity among all organic acids in grape juice. In this study, we used tartaric acid as the main target and anion‐exchange resin to remove tartaric acid from concentrated grape juice. Factors influencing the removal process were optimized by liquid chromatography with ultraviolet detection and statistical analysis for optimal deacidification of concentrated grape juice. Use of the anion‐exchange resin 335 treat the concentrated grape juice at a ratio of 1:6 (2:11.98) at 15.57°C for 4.35 hr. The tartaric acid removal rate reached 69.01%; the anion‐exchange resin 335 demonstrated the best removal effect. |
---|