Cargando…

Optimization of deacidification for concentrated grape juice

Excessive organic acids in grape juice will not only result in poor taste but will also cause turbidity and sedimentation. Tartaric acid exerts the most significant acidity among all organic acids in grape juice. In this study, we used tartaric acid as the main target and anion‐exchange resin to rem...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ning, Wei, Yue, Li, Xuemeng, Wang, Jiahui, Zhou, Jiaqian, Wang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593384/
https://www.ncbi.nlm.nih.gov/pubmed/31289653
http://dx.doi.org/10.1002/fsn3.1037
Descripción
Sumario:Excessive organic acids in grape juice will not only result in poor taste but will also cause turbidity and sedimentation. Tartaric acid exerts the most significant acidity among all organic acids in grape juice. In this study, we used tartaric acid as the main target and anion‐exchange resin to remove tartaric acid from concentrated grape juice. Factors influencing the removal process were optimized by liquid chromatography with ultraviolet detection and statistical analysis for optimal deacidification of concentrated grape juice. Use of the anion‐exchange resin 335 treat the concentrated grape juice at a ratio of 1:6 (2:11.98) at 15.57°C for 4.35 hr. The tartaric acid removal rate reached 69.01%; the anion‐exchange resin 335 demonstrated the best removal effect.