Cargando…

Unique, Diverged, and Conserved Mitochondrial Functions Influencing Candida albicans Respiration

Candida albicans is an opportunistic fungal pathogen of major clinical concern. The virulence of this pathogen is intimately intertwined with its metabolism. Mitochondria, which have a central metabolic role, have undergone many lineage-specific adaptations in association with their eukaryotic host....

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Nuo, Parrish, Rebecca S., Calderone, Richard A., Fonzi, William A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593398/
https://www.ncbi.nlm.nih.gov/pubmed/31239372
http://dx.doi.org/10.1128/mBio.00300-19
Descripción
Sumario:Candida albicans is an opportunistic fungal pathogen of major clinical concern. The virulence of this pathogen is intimately intertwined with its metabolism. Mitochondria, which have a central metabolic role, have undergone many lineage-specific adaptations in association with their eukaryotic host. A screen for lineage-specific genes identified seven such genes specific to the CTG clade of fungi, of which C. albicans is a member. Each is required for respiratory growth and is integral to expression of complex I, III, or IV of the electron transport chain. Two genes, NUO3 and NUO4, encode supernumerary subunits of complex I, whereas NUE1 and NUE2 have nonstructural roles in expression of complex I. Similarly, the other three genes have nonstructural roles in expression of complex III (QCE1) or complex IV (COE1 and COE2). In addition to these novel additions, an alternative functional assignment was found for the mitochondrial protein encoded by MNE1. MNE1 was required for complex I expression in C. albicans, whereas the distantly related Saccharomyces cerevisiae ortholog participates in expression of complex III. Phenotypic analysis of deletion mutants showed that fermentative metabolism is unable to support optimal growth rates or yields of C. albicans. However, yeast-hypha morphogenesis, an important virulence attribute, did not require respiratory metabolism under hypoxic conditions. The inability to respire also resulted in hypersensitivity to the antifungal fluconazole and in attenuated virulence in a Galleria mellonella infection model. The results show that lineage-specific adaptations have occurred in C. albicans mitochondria and highlight the significance of respiratory metabolism in the pathobiology of C. albicans.