Cargando…

Light‐Responsive Arylazopyrazole Gelators: From Organic to Aqueous Media and from Supramolecular to Dynamic Covalent Chemistry

Versatile photoresponsive gels based on tripodal low molecular weight gelators (LMWGs) are reported. A cyclohexane‐1,3,5‐tricarboxamide (CTA) core provides face‐to‐face hydrogen bonding and a planar conformation, inducing the self‐assembly of supramolecular polymers. The CTA core was substituted wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Chu, Chih‐Wei, Stricker, Lucas, Kirse, Thomas M., Hayduk, Matthias, Ravoo, Bart Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593461/
https://www.ncbi.nlm.nih.gov/pubmed/30791165
http://dx.doi.org/10.1002/chem.201806042
Descripción
Sumario:Versatile photoresponsive gels based on tripodal low molecular weight gelators (LMWGs) are reported. A cyclohexane‐1,3,5‐tricarboxamide (CTA) core provides face‐to‐face hydrogen bonding and a planar conformation, inducing the self‐assembly of supramolecular polymers. The CTA core was substituted with three arylazopyrazole (AAP) arms. AAP is a molecular photoswitch that isomerizes reversibly under alternating UV and green light irradiation. The E isomer of AAP is planar, favoring the self‐assembly, whereas the Z isomer has a twisted structure, leading to a disassembly of the supramolecular polymers. By using tailor‐made molecular design of the tripodal gelator, light‐responsive organogels and hydrogels were obtained. Additionally, in the case of the hydrogels, AAP was coupled to the core through hydrazones, so that the hydrogelator and, hence, the photoresponsive hydrogel could also be assembled and disassembled by using dynamic covalent chemistry.