Cargando…
edge2vec: Representation learning using edge semantics for biomedical knowledge discovery
BACKGROUND: Representation learning provides new and powerful graph analytical approaches and tools for the highly valued data science challenge of mining knowledge graphs. Since previous graph analytical methods have mostly focused on homogeneous graphs, an important current challenge is extending...
Autores principales: | Gao, Zheng, Fu, Gang, Ouyang, Chunping, Tsutsui, Satoshi, Liu, Xiaozhong, Yang, Jeremy, Gessner, Christopher, Foote, Brian, Wild, David, Ding, Ying, Yu, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593489/ https://www.ncbi.nlm.nih.gov/pubmed/31238875 http://dx.doi.org/10.1186/s12859-019-2914-2 |
Ejemplares similares
-
Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration
por: Chepelev, Leonid L, et al.
Publicado: (2011) -
SimVec: predicting polypharmacy side effects for new drugs
por: Lukashina, Nina, et al.
Publicado: (2022) -
Semantic relatedness and similarity of biomedical terms: examining the effects of recency, size, and section of biomedical publications on the performance of word2vec
por: Zhu, Yongjun, et al.
Publicado: (2017) -
Edge detection in microscopy images using curvelets
por: Gebäck, Tobias, et al.
Publicado: (2009) -
On the significance of edges for connectivity in uncertain random graphs
por: Li, Hao, et al.
Publicado: (2021)