Cargando…

miR-221-5p regulates proliferation and migration in human prostate cancer cells and reduces tumor growth in vivo

BACKGROUND: Despite latest advances in prostate cancer (PCa) therapy, PCa remains the third-leading cause of cancer-related death in European men. Dysregulation of microRNAs (miRNAs), small non-coding RNA molecules with gene expression regulatory function, has been reported in all types of epithelia...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiener, Mirjam, Chen, Lanpeng, Krebs, Markus, Grosjean, Joël, Klima, Irena, Kalogirou, Charis, Riedmiller, Hubertus, Kneitz, Burkhard, Thalmann, George N., Snaar-Jagalska, Ewa, Spahn, Martin, Kruithof-de Julio, Marianna, Zoni, Eugenio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593572/
https://www.ncbi.nlm.nih.gov/pubmed/31238903
http://dx.doi.org/10.1186/s12885-019-5819-6
Descripción
Sumario:BACKGROUND: Despite latest advances in prostate cancer (PCa) therapy, PCa remains the third-leading cause of cancer-related death in European men. Dysregulation of microRNAs (miRNAs), small non-coding RNA molecules with gene expression regulatory function, has been reported in all types of epithelial and haematological cancers. In particular, miR-221-5p alterations have been reported in PCa. METHODS: miRNA expression data was retrieved from a comprehensive publicly available dataset of 218 PCa patients (GSE21036) and miR-221-5p expression levels were analysed. The functional role of miR-221-5p was characterised in androgen- dependent and androgen- independent PCa cell line models (C4–2 and PC-3M-Pro4 cells) by miR-221-5p overexpression and knock-down experiments. The metastatic potential of highly aggressive PC-3M-Pro4 cells overexpressing miR-221-5p was determined by studying extravasation in a zebrafish model. Finally, the effect of miR-221-5p overexpression on the growth of PC-3M-Pro4luc2 cells in vivo was studied by orthotopic implantation in male Balb/cByJ nude mice and assessment of tumor growth. RESULTS: Analysis of microRNA expression dataset for human primary and metastatic PCa samples and control normal adjacent benign prostate revealed miR-221-5p to be significantly downregulated in PCa compared to normal prostate tissue and in metastasis compared to primary PCa. Our in vitro data suggest that miR-221-5p overexpression reduced PCa cell proliferation and colony formation. Furthermore, miR-221-5p overexpression dramatically reduced migration of PCa cells, which was associated with differential expression of selected EMT markers. The functional changes of miR-221-5p overexpression were reversible by the loss of miR-221-5p levels, indicating that the tumor suppressive effects were specific to miR-221-5p. Additionally, miR-221-5p overexpression significantly reduced PC-3M-Pro4 cell extravasation and metastasis formation in a zebrafish model and decreased tumor burden in an orthotopic mouse model of PCa. CONCLUSIONS: Together these data strongly support a tumor suppressive role of miR-221-5p in the context of PCa and its potential as therapeutic target. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12885-019-5819-6) contains supplementary material, which is available to authorized users.