Cargando…
Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding
PURPOSE: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, it has been shown recently that, in the general Standard Model, parameter estimation from dMRI dat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593681/ https://www.ncbi.nlm.nih.gov/pubmed/30865319 http://dx.doi.org/10.1002/mrm.27714 |
_version_ | 1783430099943555072 |
---|---|
author | Coelho, Santiago Pozo, Jose M. Jespersen, Sune N. Jones, Derek K. Frangi, Alejandro F. |
author_facet | Coelho, Santiago Pozo, Jose M. Jespersen, Sune N. Jones, Derek K. Frangi, Alejandro F. |
author_sort | Coelho, Santiago |
collection | PubMed |
description | PURPOSE: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, it has been shown recently that, in the general Standard Model, parameter estimation from dMRI data is ill‐conditioned even when very high b‐values are applied. We analyze this issue for the Neurite Orientation Dispersion and Density Imaging with Diffusivity Assessment (NODDIDA) model and demonstrate that its extension from single diffusion encoding (SDE) to double diffusion encoding (DDE) resolves the ill‐posedness for intermediate diffusion weightings, producing an increase in accuracy and precision of the parameter estimation. METHODS: We analyze theoretically the cumulant expansion up to fourth order in b of SDE and DDE signals. Additionally, we perform in silico experiments to compare SDE and DDE capabilities under similar noise conditions. RESULTS: We prove analytically that DDE provides invariant information non‐accessible from SDE, which makes the NODDIDA parameter estimation injective. The in silico experiments show that DDE reduces the bias and mean square error of the estimation along the whole feasible region of 5D model parameter space. CONCLUSIONS: DDE adds additional information for estimating the model parameters, unexplored by SDE. We show, as an example, that this is sufficient to solve the previously reported degeneracies in the NODDIDA model parameter estimation. |
format | Online Article Text |
id | pubmed-6593681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65936812019-07-10 Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding Coelho, Santiago Pozo, Jose M. Jespersen, Sune N. Jones, Derek K. Frangi, Alejandro F. Magn Reson Med Full Papers—Biophysics and Basic Biomedical Research PURPOSE: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, it has been shown recently that, in the general Standard Model, parameter estimation from dMRI data is ill‐conditioned even when very high b‐values are applied. We analyze this issue for the Neurite Orientation Dispersion and Density Imaging with Diffusivity Assessment (NODDIDA) model and demonstrate that its extension from single diffusion encoding (SDE) to double diffusion encoding (DDE) resolves the ill‐posedness for intermediate diffusion weightings, producing an increase in accuracy and precision of the parameter estimation. METHODS: We analyze theoretically the cumulant expansion up to fourth order in b of SDE and DDE signals. Additionally, we perform in silico experiments to compare SDE and DDE capabilities under similar noise conditions. RESULTS: We prove analytically that DDE provides invariant information non‐accessible from SDE, which makes the NODDIDA parameter estimation injective. The in silico experiments show that DDE reduces the bias and mean square error of the estimation along the whole feasible region of 5D model parameter space. CONCLUSIONS: DDE adds additional information for estimating the model parameters, unexplored by SDE. We show, as an example, that this is sufficient to solve the previously reported degeneracies in the NODDIDA model parameter estimation. John Wiley and Sons Inc. 2019-03-13 2019-07 /pmc/articles/PMC6593681/ /pubmed/30865319 http://dx.doi.org/10.1002/mrm.27714 Text en © 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers—Biophysics and Basic Biomedical Research Coelho, Santiago Pozo, Jose M. Jespersen, Sune N. Jones, Derek K. Frangi, Alejandro F. Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding |
title | Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding |
title_full | Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding |
title_fullStr | Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding |
title_full_unstemmed | Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding |
title_short | Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding |
title_sort | resolving degeneracy in diffusion mri biophysical model parameter estimation using double diffusion encoding |
topic | Full Papers—Biophysics and Basic Biomedical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593681/ https://www.ncbi.nlm.nih.gov/pubmed/30865319 http://dx.doi.org/10.1002/mrm.27714 |
work_keys_str_mv | AT coelhosantiago resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding AT pozojosem resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding AT jespersensunen resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding AT jonesderekk resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding AT frangialejandrof resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding |