Cargando…

Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding

PURPOSE: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, it has been shown recently that, in the general Standard Model, parameter estimation from dMRI dat...

Descripción completa

Detalles Bibliográficos
Autores principales: Coelho, Santiago, Pozo, Jose M., Jespersen, Sune N., Jones, Derek K., Frangi, Alejandro F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593681/
https://www.ncbi.nlm.nih.gov/pubmed/30865319
http://dx.doi.org/10.1002/mrm.27714
_version_ 1783430099943555072
author Coelho, Santiago
Pozo, Jose M.
Jespersen, Sune N.
Jones, Derek K.
Frangi, Alejandro F.
author_facet Coelho, Santiago
Pozo, Jose M.
Jespersen, Sune N.
Jones, Derek K.
Frangi, Alejandro F.
author_sort Coelho, Santiago
collection PubMed
description PURPOSE: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, it has been shown recently that, in the general Standard Model, parameter estimation from dMRI data is ill‐conditioned even when very high b‐values are applied. We analyze this issue for the Neurite Orientation Dispersion and Density Imaging with Diffusivity Assessment (NODDIDA) model and demonstrate that its extension from single diffusion encoding (SDE) to double diffusion encoding (DDE) resolves the ill‐posedness for intermediate diffusion weightings, producing an increase in accuracy and precision of the parameter estimation. METHODS: We analyze theoretically the cumulant expansion up to fourth order in b of SDE and DDE signals. Additionally, we perform in silico experiments to compare SDE and DDE capabilities under similar noise conditions. RESULTS: We prove analytically that DDE provides invariant information non‐accessible from SDE, which makes the NODDIDA parameter estimation injective. The in silico experiments show that DDE reduces the bias and mean square error of the estimation along the whole feasible region of 5D model parameter space. CONCLUSIONS: DDE adds additional information for estimating the model parameters, unexplored by SDE. We show, as an example, that this is sufficient to solve the previously reported degeneracies in the NODDIDA model parameter estimation.
format Online
Article
Text
id pubmed-6593681
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-65936812019-07-10 Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding Coelho, Santiago Pozo, Jose M. Jespersen, Sune N. Jones, Derek K. Frangi, Alejandro F. Magn Reson Med Full Papers—Biophysics and Basic Biomedical Research PURPOSE: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, it has been shown recently that, in the general Standard Model, parameter estimation from dMRI data is ill‐conditioned even when very high b‐values are applied. We analyze this issue for the Neurite Orientation Dispersion and Density Imaging with Diffusivity Assessment (NODDIDA) model and demonstrate that its extension from single diffusion encoding (SDE) to double diffusion encoding (DDE) resolves the ill‐posedness for intermediate diffusion weightings, producing an increase in accuracy and precision of the parameter estimation. METHODS: We analyze theoretically the cumulant expansion up to fourth order in b of SDE and DDE signals. Additionally, we perform in silico experiments to compare SDE and DDE capabilities under similar noise conditions. RESULTS: We prove analytically that DDE provides invariant information non‐accessible from SDE, which makes the NODDIDA parameter estimation injective. The in silico experiments show that DDE reduces the bias and mean square error of the estimation along the whole feasible region of 5D model parameter space. CONCLUSIONS: DDE adds additional information for estimating the model parameters, unexplored by SDE. We show, as an example, that this is sufficient to solve the previously reported degeneracies in the NODDIDA model parameter estimation. John Wiley and Sons Inc. 2019-03-13 2019-07 /pmc/articles/PMC6593681/ /pubmed/30865319 http://dx.doi.org/10.1002/mrm.27714 Text en © 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers—Biophysics and Basic Biomedical Research
Coelho, Santiago
Pozo, Jose M.
Jespersen, Sune N.
Jones, Derek K.
Frangi, Alejandro F.
Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding
title Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding
title_full Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding
title_fullStr Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding
title_full_unstemmed Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding
title_short Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding
title_sort resolving degeneracy in diffusion mri biophysical model parameter estimation using double diffusion encoding
topic Full Papers—Biophysics and Basic Biomedical Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593681/
https://www.ncbi.nlm.nih.gov/pubmed/30865319
http://dx.doi.org/10.1002/mrm.27714
work_keys_str_mv AT coelhosantiago resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding
AT pozojosem resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding
AT jespersensunen resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding
AT jonesderekk resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding
AT frangialejandrof resolvingdegeneracyindiffusionmribiophysicalmodelparameterestimationusingdoublediffusionencoding