Cargando…
Correlation between skeletal muscle fiber type and free amino acid levels in Japanese Black steers
Free amino acids are important components of tastants and flavor precursors in meat. To clarify the correlation between muscle fiber type and free amino acids, we determined the concentrations of various free amino acids and dipeptides in samples of different muscle tissues (n = 21), collected from...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594095/ https://www.ncbi.nlm.nih.gov/pubmed/30811817 http://dx.doi.org/10.1111/asj.13185 |
Sumario: | Free amino acids are important components of tastants and flavor precursors in meat. To clarify the correlation between muscle fiber type and free amino acids, we determined the concentrations of various free amino acids and dipeptides in samples of different muscle tissues (n = 21), collected from 26‐month‐old Japanese Black steers (n = 3) at 2 days postmortem. The proportions of the myosin heavy chain (MyHC), slow (MyHC1) and fast (MyHC2) isoforms were determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). The contents of free amino acids and dipeptides were measured by high performance liquid chromatography (HPLC). The MyHC isoform composition varied among the tissue samples. The MyHC1 proportion ranged from 6.9% ± 3.9% to 83.3% ± 16.7%. We confirmed that there was a strong positive correlation between MyHC1 composition and total free amino acid concentrations, including those for two dipeptides. Among the 31 measured free amino acids and dipeptides, 11 showed significant positive correlations and five showed significant negative correlations with MyHC1 composition. These results suggest that a high MyHC1 content induces high free amino acid contents in bovine muscles possibly because of greater oxidative metabolism. This high level of free amino acids could contribute to the intense flavor of meat that is rich in slow‐twitch fibers. |
---|