Cargando…
DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation
Accurate medical image segmentation is essential for diagnosis, surgical planning and many other applications. Convolutional Neural Networks (CNNs) have become the state-of-the-art automatic segmentation methods. However, fully automatic results may still need to be refined to become accurate and ro...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594450/ https://www.ncbi.nlm.nih.gov/pubmed/29993532 http://dx.doi.org/10.1109/TPAMI.2018.2840695 |
Ejemplares similares
-
Bundle geodesic convolutional neural network for diffusion-weighted imaging segmentation
por: Liu, Renfei, et al.
Publicado: (2022) -
Interactions by 2D Gel Electrophoresis Overlap (iGEO): a novel high fidelity approach to identify constituents of protein complexes
por: Yoshigi, Masaaki, et al.
Publicado: (2013) -
Segmentation of MR image using local and global region based geodesic model
por: Li, Xiuming, et al.
Publicado: (2015) -
MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
por: Müller, Dominik, et al.
Publicado: (2021) -
The geometry of geodesics /
por: Busemann, Herbert, 1905-1994
Publicado: (1955)