Cargando…
Identifying the appropriate spatial resolution for the analysis of crime patterns
BACKGROUND: A key issue in the analysis of many spatial processes is the choice of an appropriate scale for the analysis. Smaller geographical units are generally preferable for the study of human phenomena because they are less likely to cause heterogeneous groups to be conflated. However, it can b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594600/ https://www.ncbi.nlm.nih.gov/pubmed/31242224 http://dx.doi.org/10.1371/journal.pone.0218324 |
_version_ | 1783430261444182016 |
---|---|
author | Malleson, Nick Steenbeek, Wouter Andresen, Martin A. |
author_facet | Malleson, Nick Steenbeek, Wouter Andresen, Martin A. |
author_sort | Malleson, Nick |
collection | PubMed |
description | BACKGROUND: A key issue in the analysis of many spatial processes is the choice of an appropriate scale for the analysis. Smaller geographical units are generally preferable for the study of human phenomena because they are less likely to cause heterogeneous groups to be conflated. However, it can be harder to obtain data for small units and small-number problems can frustrate quantitative analysis. This research presents a new approach that can be used to estimate the most appropriate scale at which to aggregate point data to areas. DATA AND METHODS: The proposed method works by creating a number of regular grids with iteratively smaller cell sizes (increasing grid resolution) and estimating the similarity between two realisations of the point pattern at each resolution. The method is applied first to simulated point patterns and then to real publicly available crime data from the city of Vancouver, Canada. The crime types tested are residential burglary, commercial burglary, theft from vehicle and theft of bike. FINDINGS: The results provide evidence for the size of spatial unit that is the most appropriate for the different types of crime studied. Importantly, the results are dependent on both the number of events in the data and the degree of spatial clustering, so a single ‘appropriate’ scale is not identified. The method is nevertheless useful as a means of better estimating what spatial scale might be appropriate for a particular piece of analysis. |
format | Online Article Text |
id | pubmed-6594600 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65946002019-07-05 Identifying the appropriate spatial resolution for the analysis of crime patterns Malleson, Nick Steenbeek, Wouter Andresen, Martin A. PLoS One Research Article BACKGROUND: A key issue in the analysis of many spatial processes is the choice of an appropriate scale for the analysis. Smaller geographical units are generally preferable for the study of human phenomena because they are less likely to cause heterogeneous groups to be conflated. However, it can be harder to obtain data for small units and small-number problems can frustrate quantitative analysis. This research presents a new approach that can be used to estimate the most appropriate scale at which to aggregate point data to areas. DATA AND METHODS: The proposed method works by creating a number of regular grids with iteratively smaller cell sizes (increasing grid resolution) and estimating the similarity between two realisations of the point pattern at each resolution. The method is applied first to simulated point patterns and then to real publicly available crime data from the city of Vancouver, Canada. The crime types tested are residential burglary, commercial burglary, theft from vehicle and theft of bike. FINDINGS: The results provide evidence for the size of spatial unit that is the most appropriate for the different types of crime studied. Importantly, the results are dependent on both the number of events in the data and the degree of spatial clustering, so a single ‘appropriate’ scale is not identified. The method is nevertheless useful as a means of better estimating what spatial scale might be appropriate for a particular piece of analysis. Public Library of Science 2019-06-26 /pmc/articles/PMC6594600/ /pubmed/31242224 http://dx.doi.org/10.1371/journal.pone.0218324 Text en © 2019 Malleson et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Malleson, Nick Steenbeek, Wouter Andresen, Martin A. Identifying the appropriate spatial resolution for the analysis of crime patterns |
title | Identifying the appropriate spatial resolution for the analysis of crime patterns |
title_full | Identifying the appropriate spatial resolution for the analysis of crime patterns |
title_fullStr | Identifying the appropriate spatial resolution for the analysis of crime patterns |
title_full_unstemmed | Identifying the appropriate spatial resolution for the analysis of crime patterns |
title_short | Identifying the appropriate spatial resolution for the analysis of crime patterns |
title_sort | identifying the appropriate spatial resolution for the analysis of crime patterns |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594600/ https://www.ncbi.nlm.nih.gov/pubmed/31242224 http://dx.doi.org/10.1371/journal.pone.0218324 |
work_keys_str_mv | AT mallesonnick identifyingtheappropriatespatialresolutionfortheanalysisofcrimepatterns AT steenbeekwouter identifyingtheappropriatespatialresolutionfortheanalysisofcrimepatterns AT andresenmartina identifyingtheappropriatespatialresolutionfortheanalysisofcrimepatterns |