Cargando…
Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death
BACKGROUND: The prediction of readmission or death after a hospital discharge for heart failure (HF) remains a major challenge. Modern healthcare systems, electronic health records, and machine learning (ML) techniques allow us to mine data to select the most significant variables (allowing for redu...
Autores principales: | Awan, Saqib E., Bennamoun, Mohammed, Sohel, Ferdous, Sanfilippo, Frank M., Chow, Benjamin J., Dwivedi, Girish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594617/ https://www.ncbi.nlm.nih.gov/pubmed/31242238 http://dx.doi.org/10.1371/journal.pone.0218760 |
Ejemplares similares
-
Machine learning‐based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics
por: Awan, Saqib Ejaz, et al.
Publicado: (2019) -
Machine learning risk prediction model for acute coronary syndrome and death from use of non-steroidal anti-inflammatory drugs in administrative data
por: Lu, Juan, et al.
Publicado: (2021) -
Transport of pilgrims during Hajj: Evidence from a discrete event simulation study
por: Owaidah, Almoaid, et al.
Publicado: (2023) -
Automatic Hierarchical Classification of Kelps Using Deep Residual Features
por: Mahmood, Ammar, et al.
Publicado: (2020) -
Applications of machine learning to undifferentiated chest pain in the emergency department: A systematic review
por: Stewart, Jonathon, et al.
Publicado: (2021)