Cargando…
DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences
Identification of drug-target interactions (DTIs) plays a key role in drug discovery. The high cost and labor-intensive nature of in vitro and in vivo experiments have highlighted the importance of in silico-based DTI prediction approaches. In several computational models, conventional protein descr...
Autores principales: | Lee, Ingoo, Keum, Jongsoo, Nam, Hojung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594651/ https://www.ncbi.nlm.nih.gov/pubmed/31199797 http://dx.doi.org/10.1371/journal.pcbi.1007129 |
Ejemplares similares
-
SELF-BLM: Prediction of drug-target interactions via self-training SVM
por: Keum, Jongsoo, et al.
Publicado: (2017) -
Sequence-based prediction of protein binding regions and drug–target interactions
por: Lee, Ingoo, et al.
Publicado: (2022) -
FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction
por: Rayhan, Farshid, et al.
Publicado: (2020) -
Identification of drug-target interaction by a random walk with restart method on an interactome network
por: Lee, Ingoo, et al.
Publicado: (2018) -
Prediction of compound-target interactions of natural products using large-scale drug and protein information
por: Keum, Jongsoo, et al.
Publicado: (2016)