Cargando…
The gene regulatory basis of genetic compensation during neural crest induction
The neural crest (NC) is a vertebrate-specific cell type that contributes to a wide range of different tissues across all three germ layers. The gene regulatory network (GRN) responsible for the formation of neural crest is conserved across vertebrates. Central to the induction of the NC GRN are AP-...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594659/ https://www.ncbi.nlm.nih.gov/pubmed/31199790 http://dx.doi.org/10.1371/journal.pgen.1008213 |
_version_ | 1783430275195207680 |
---|---|
author | Dooley, Christopher M. Wali, Neha Sealy, Ian M. White, Richard J. Stemple, Derek L. Collins, John E. Busch-Nentwich, Elisabeth M. |
author_facet | Dooley, Christopher M. Wali, Neha Sealy, Ian M. White, Richard J. Stemple, Derek L. Collins, John E. Busch-Nentwich, Elisabeth M. |
author_sort | Dooley, Christopher M. |
collection | PubMed |
description | The neural crest (NC) is a vertebrate-specific cell type that contributes to a wide range of different tissues across all three germ layers. The gene regulatory network (GRN) responsible for the formation of neural crest is conserved across vertebrates. Central to the induction of the NC GRN are AP-2 and SoxE transcription factors. NC induction robustness is ensured through the ability of some of these transcription factors to compensate loss of function of gene family members. However the gene regulatory events underlying compensation are poorly understood. We have used gene knockout and RNA sequencing strategies to dissect NC induction and compensation in zebrafish. We genetically ablate the NC using double mutants of tfap2a;tfap2c or remove specific subsets of the NC with sox10 and mitfa knockouts and characterise genome-wide gene expression levels across multiple time points. We find that compensation through a single wild-type allele of tfap2c is capable of maintaining early NC induction and differentiation in the absence of tfap2a function, but many target genes have abnormal expression levels and therefore show sensitivity to the reduced tfap2 dosage. This separation of morphological and molecular phenotypes identifies a core set of genes required for early NC development. We also identify the 15 somites stage as the peak of the molecular phenotype which strongly diminishes at 24 hpf even as the morphological phenotype becomes more apparent. Using gene knockouts, we associate previously uncharacterised genes with pigment cell development and establish a role for maternal Hippo signalling in melanocyte differentiation. This work extends and refines the NC GRN while also uncovering the transcriptional basis of genetic compensation via paralogues. |
format | Online Article Text |
id | pubmed-6594659 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65946592019-07-05 The gene regulatory basis of genetic compensation during neural crest induction Dooley, Christopher M. Wali, Neha Sealy, Ian M. White, Richard J. Stemple, Derek L. Collins, John E. Busch-Nentwich, Elisabeth M. PLoS Genet Research Article The neural crest (NC) is a vertebrate-specific cell type that contributes to a wide range of different tissues across all three germ layers. The gene regulatory network (GRN) responsible for the formation of neural crest is conserved across vertebrates. Central to the induction of the NC GRN are AP-2 and SoxE transcription factors. NC induction robustness is ensured through the ability of some of these transcription factors to compensate loss of function of gene family members. However the gene regulatory events underlying compensation are poorly understood. We have used gene knockout and RNA sequencing strategies to dissect NC induction and compensation in zebrafish. We genetically ablate the NC using double mutants of tfap2a;tfap2c or remove specific subsets of the NC with sox10 and mitfa knockouts and characterise genome-wide gene expression levels across multiple time points. We find that compensation through a single wild-type allele of tfap2c is capable of maintaining early NC induction and differentiation in the absence of tfap2a function, but many target genes have abnormal expression levels and therefore show sensitivity to the reduced tfap2 dosage. This separation of morphological and molecular phenotypes identifies a core set of genes required for early NC development. We also identify the 15 somites stage as the peak of the molecular phenotype which strongly diminishes at 24 hpf even as the morphological phenotype becomes more apparent. Using gene knockouts, we associate previously uncharacterised genes with pigment cell development and establish a role for maternal Hippo signalling in melanocyte differentiation. This work extends and refines the NC GRN while also uncovering the transcriptional basis of genetic compensation via paralogues. Public Library of Science 2019-06-14 /pmc/articles/PMC6594659/ /pubmed/31199790 http://dx.doi.org/10.1371/journal.pgen.1008213 Text en © 2019 Dooley et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Dooley, Christopher M. Wali, Neha Sealy, Ian M. White, Richard J. Stemple, Derek L. Collins, John E. Busch-Nentwich, Elisabeth M. The gene regulatory basis of genetic compensation during neural crest induction |
title | The gene regulatory basis of genetic compensation during neural crest induction |
title_full | The gene regulatory basis of genetic compensation during neural crest induction |
title_fullStr | The gene regulatory basis of genetic compensation during neural crest induction |
title_full_unstemmed | The gene regulatory basis of genetic compensation during neural crest induction |
title_short | The gene regulatory basis of genetic compensation during neural crest induction |
title_sort | gene regulatory basis of genetic compensation during neural crest induction |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594659/ https://www.ncbi.nlm.nih.gov/pubmed/31199790 http://dx.doi.org/10.1371/journal.pgen.1008213 |
work_keys_str_mv | AT dooleychristopherm thegeneregulatorybasisofgeneticcompensationduringneuralcrestinduction AT walineha thegeneregulatorybasisofgeneticcompensationduringneuralcrestinduction AT sealyianm thegeneregulatorybasisofgeneticcompensationduringneuralcrestinduction AT whiterichardj thegeneregulatorybasisofgeneticcompensationduringneuralcrestinduction AT stemplederekl thegeneregulatorybasisofgeneticcompensationduringneuralcrestinduction AT collinsjohne thegeneregulatorybasisofgeneticcompensationduringneuralcrestinduction AT buschnentwichelisabethm thegeneregulatorybasisofgeneticcompensationduringneuralcrestinduction AT dooleychristopherm generegulatorybasisofgeneticcompensationduringneuralcrestinduction AT walineha generegulatorybasisofgeneticcompensationduringneuralcrestinduction AT sealyianm generegulatorybasisofgeneticcompensationduringneuralcrestinduction AT whiterichardj generegulatorybasisofgeneticcompensationduringneuralcrestinduction AT stemplederekl generegulatorybasisofgeneticcompensationduringneuralcrestinduction AT collinsjohne generegulatorybasisofgeneticcompensationduringneuralcrestinduction AT buschnentwichelisabethm generegulatorybasisofgeneticcompensationduringneuralcrestinduction |