Cargando…

Proteomic analysis of excretory-secretory products from young adults of Angiostrongylus cantonensis

BACKGROUND: Angiostrongyliasis is caused by the nematode Angiostrongylus cantonensis and can lead to eosinophilic meningitis and meningoencephalitis in humans. The young adult worms play central pathogenic roles in the central nervous system (CNS); however, the underlying mechanism is unclear. Excre...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Kuang-Yao, Lu, Pei-Jhen, Cheng, Chien-Ju, Jhan, Kai-Yuan, Yeh, Shih-Chien, Wang, Lian-Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Instituto Oswaldo Cruz, Ministério da Saúde 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594673/
https://www.ncbi.nlm.nih.gov/pubmed/31241649
http://dx.doi.org/10.1590/0074-02760180556
Descripción
Sumario:BACKGROUND: Angiostrongyliasis is caused by the nematode Angiostrongylus cantonensis and can lead to eosinophilic meningitis and meningoencephalitis in humans. The young adult worms play central pathogenic roles in the central nervous system (CNS); however, the underlying mechanism is unclear. Excretory-secretory products (ESPs) are good investigation targets for studying the relationship between a host and its parasite. OBJECTIVES: We aimed to profile, identify, and characterise the proteins in the ESPs of A. cantonensis young adults. METHODS: The ESPs of young adult worms were collected from culture medium after incubation ranging from 24 to 96 h. Proteomic and bioinformatics analyses were performed to characterise the ESPs. FINDINGS: A total of 51 spots were identified, and the highly expressed proteins included two protein disulphide isomerases, one calreticulin, and three uncharacterised proteins. Subsequently, approximately 254 proteins were identified in the ESPs of A. cantonensis young adults via liquid chromatography-mass spectrometry (LC-MS/MS) analysis, and these were further classified according to their characteristics and biological functions. Finally, we identified the immunoreactive proteins from a reference map of ESPs from A. cantonensis young adults. Approximately eight proteins were identified, including a protein disulphide isomerase, a putative aspartic protease, annexin, and five uncharacterised proteins. The study established and identified protein reference maps for the ESPs of A. cantonensis young adults. MAIN CONCLUSIONS: The identified proteins may be potential targets for the development of diagnostic or therapeutic agents for human angiostrongyliasis.