Cargando…
Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons
In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now re...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594754/ https://www.ncbi.nlm.nih.gov/pubmed/31157617 http://dx.doi.org/10.7554/eLife.44423 |
_version_ | 1783430291139854336 |
---|---|
author | An, Disi Fujiki, Ryosuke Iannitelli, Dylan E Smerdon, John W Maity, Shuvadeep Rose, Matthew F Gelber, Alon Wanaselja, Elizabeth K Yagudayeva, Ilona Lee, Joun Y Vogel, Christine Wichterle, Hynek Engle, Elizabeth C Mazzoni, Esteban Orlando |
author_facet | An, Disi Fujiki, Ryosuke Iannitelli, Dylan E Smerdon, John W Maity, Shuvadeep Rose, Matthew F Gelber, Alon Wanaselja, Elizabeth K Yagudayeva, Ilona Lee, Joun Y Vogel, Christine Wichterle, Hynek Engle, Elizabeth C Mazzoni, Esteban Orlando |
author_sort | An, Disi |
collection | PubMed |
description | In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration. |
format | Online Article Text |
id | pubmed-6594754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-65947542019-06-28 Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons An, Disi Fujiki, Ryosuke Iannitelli, Dylan E Smerdon, John W Maity, Shuvadeep Rose, Matthew F Gelber, Alon Wanaselja, Elizabeth K Yagudayeva, Ilona Lee, Joun Y Vogel, Christine Wichterle, Hynek Engle, Elizabeth C Mazzoni, Esteban Orlando eLife Neuroscience In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration. eLife Sciences Publications, Ltd 2019-06-03 /pmc/articles/PMC6594754/ /pubmed/31157617 http://dx.doi.org/10.7554/eLife.44423 Text en © 2019, An et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience An, Disi Fujiki, Ryosuke Iannitelli, Dylan E Smerdon, John W Maity, Shuvadeep Rose, Matthew F Gelber, Alon Wanaselja, Elizabeth K Yagudayeva, Ilona Lee, Joun Y Vogel, Christine Wichterle, Hynek Engle, Elizabeth C Mazzoni, Esteban Orlando Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons |
title | Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons |
title_full | Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons |
title_fullStr | Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons |
title_full_unstemmed | Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons |
title_short | Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons |
title_sort | stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between als resistant and sensitive motor neurons |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594754/ https://www.ncbi.nlm.nih.gov/pubmed/31157617 http://dx.doi.org/10.7554/eLife.44423 |
work_keys_str_mv | AT andisi stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT fujikiryosuke stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT iannitellidylane stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT smerdonjohnw stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT maityshuvadeep stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT rosematthewf stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT gelberalon stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT wanaseljaelizabethk stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT yagudayevailona stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT leejouny stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT vogelchristine stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT wichterlehynek stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT engleelizabethc stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons AT mazzoniestebanorlando stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons |