Cargando…

Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons

In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now re...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Disi, Fujiki, Ryosuke, Iannitelli, Dylan E, Smerdon, John W, Maity, Shuvadeep, Rose, Matthew F, Gelber, Alon, Wanaselja, Elizabeth K, Yagudayeva, Ilona, Lee, Joun Y, Vogel, Christine, Wichterle, Hynek, Engle, Elizabeth C, Mazzoni, Esteban Orlando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594754/
https://www.ncbi.nlm.nih.gov/pubmed/31157617
http://dx.doi.org/10.7554/eLife.44423
_version_ 1783430291139854336
author An, Disi
Fujiki, Ryosuke
Iannitelli, Dylan E
Smerdon, John W
Maity, Shuvadeep
Rose, Matthew F
Gelber, Alon
Wanaselja, Elizabeth K
Yagudayeva, Ilona
Lee, Joun Y
Vogel, Christine
Wichterle, Hynek
Engle, Elizabeth C
Mazzoni, Esteban Orlando
author_facet An, Disi
Fujiki, Ryosuke
Iannitelli, Dylan E
Smerdon, John W
Maity, Shuvadeep
Rose, Matthew F
Gelber, Alon
Wanaselja, Elizabeth K
Yagudayeva, Ilona
Lee, Joun Y
Vogel, Christine
Wichterle, Hynek
Engle, Elizabeth C
Mazzoni, Esteban Orlando
author_sort An, Disi
collection PubMed
description In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration.
format Online
Article
Text
id pubmed-6594754
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-65947542019-06-28 Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons An, Disi Fujiki, Ryosuke Iannitelli, Dylan E Smerdon, John W Maity, Shuvadeep Rose, Matthew F Gelber, Alon Wanaselja, Elizabeth K Yagudayeva, Ilona Lee, Joun Y Vogel, Christine Wichterle, Hynek Engle, Elizabeth C Mazzoni, Esteban Orlando eLife Neuroscience In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration. eLife Sciences Publications, Ltd 2019-06-03 /pmc/articles/PMC6594754/ /pubmed/31157617 http://dx.doi.org/10.7554/eLife.44423 Text en © 2019, An et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
An, Disi
Fujiki, Ryosuke
Iannitelli, Dylan E
Smerdon, John W
Maity, Shuvadeep
Rose, Matthew F
Gelber, Alon
Wanaselja, Elizabeth K
Yagudayeva, Ilona
Lee, Joun Y
Vogel, Christine
Wichterle, Hynek
Engle, Elizabeth C
Mazzoni, Esteban Orlando
Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons
title Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons
title_full Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons
title_fullStr Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons
title_full_unstemmed Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons
title_short Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons
title_sort stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between als resistant and sensitive motor neurons
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594754/
https://www.ncbi.nlm.nih.gov/pubmed/31157617
http://dx.doi.org/10.7554/eLife.44423
work_keys_str_mv AT andisi stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT fujikiryosuke stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT iannitellidylane stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT smerdonjohnw stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT maityshuvadeep stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT rosematthewf stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT gelberalon stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT wanaseljaelizabethk stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT yagudayevailona stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT leejouny stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT vogelchristine stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT wichterlehynek stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT engleelizabethc stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons
AT mazzoniestebanorlando stemcellderivedcranialandspinalmotorneuronsrevealproteostaticdifferencesbetweenalsresistantandsensitivemotorneurons