Cargando…
Neural networks versus Logistic regression for 30 days all-cause readmission prediction
Heart failure (HF) is one of the leading causes of hospital admissions in the US. Readmission within 30 days after a HF hospitalization is both a recognized indicator for disease progression and a source of considerable financial burden to the healthcare system. Consequently, the identification of p...
Autores principales: | Allam, Ahmed, Nagy, Mate, Thoma, George, Krauthammer, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595068/ https://www.ncbi.nlm.nih.gov/pubmed/31243311 http://dx.doi.org/10.1038/s41598-019-45685-z |
Ejemplares similares
-
Predicting all-cause risk of 30-day hospital readmission using artificial neural networks
por: Jamei, Mehdi, et al.
Publicado: (2017) -
Correction: Predicting all-cause risk of 30-day hospital readmission using artificial neural networks
por: Jamei, Mehdi, et al.
Publicado: (2018) -
Comparison of Artificial Neural Networks and Logistic Regression for 30-days Survival Prediction of Cancer Patients
por: Arkin, Funda Secik, et al.
Publicado: (2020) -
Epidemiology and Predictors of all-cause 30-Day readmission in patients with sickle cell crisis
por: Kumar, Vivek, et al.
Publicado: (2020) -
Comparison of Back-Propagation Neural Network, LACE Index and HOSPITAL Score in Predicting All-Cause Risk of 30-Day Readmission
por: Lin, Chaohsin, et al.
Publicado: (2021)