Cargando…
A Simulation Study Comparing Different Statistical Approaches for the Identification of Predictive Biomarkers
Identification of relevant biomarkers that are associated with a treatment effect is one requirement for adequate treatment stratification and consequently to improve health care by administering the best available treatment to an individual patient. Various statistical approaches were proposed that...
Autores principales: | Haller, Bernhard, Ulm, Kurt, Hapfelmeier, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595324/ https://www.ncbi.nlm.nih.gov/pubmed/31312252 http://dx.doi.org/10.1155/2019/7037230 |
Ejemplares similares
-
A simulation study on estimating biomarker–treatment interaction effects in randomized trials with prognostic variables
por: Haller, Bernhard, et al.
Publicado: (2018) -
Nonparametric Subgroup Identification by PRIM and CART: A Simulation and Application Study
por: Ott, Armin, et al.
Publicado: (2017) -
A systematic review of subgroup analyses in randomised clinical trials in cardiovascular disease
por: Brand, Korbinian J, et al.
Publicado: (2021) -
Identification of target groups and individuals for adherence interventions using tree-based prediction models
por: Wendl, Johannes, et al.
Publicado: (2022) -
A scoping methodological review of simulation studies comparing statistical and machine learning approaches to risk prediction for time-to-event data
por: Smith, Hayley, et al.
Publicado: (2022)