Cargando…

Use of zero-frequency resonator for automatically detecting systolic peaks of photoplethysmogram signal

This work investigates the application of zero-frequency resonator (ZFR) for detecting systolic peaks of photoplethysmogram (PPG) signals. Based on the authors’ studies, they propose an automated noise-robust method, which consists of the central difference operation, the ZFR, the mean subtraction a...

Descripción completa

Detalles Bibliográficos
Autores principales: Vadrevu, Simhadri, Manikandan, M. Sabarimalai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Institution of Engineering and Technology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595535/
https://www.ncbi.nlm.nih.gov/pubmed/31341628
http://dx.doi.org/10.1049/htl.2018.5026
Descripción
Sumario:This work investigates the application of zero-frequency resonator (ZFR) for detecting systolic peaks of photoplethysmogram (PPG) signals. Based on the authors’ studies, they propose an automated noise-robust method, which consists of the central difference operation, the ZFR, the mean subtraction and averaging, the peak determination, and the peak rejection/acceptance rule. The method is evaluated using different kinds of PPG signals taken from the standard MIT-BIH polysomnographic database and Complex Systems Laboratory database and the recorded PPG signals at their Biomedical System Lab. The method achieves an average sensitivity (Se) of 99.95%, positive predictivity (Pp) of 99.89%, and overall accuracy (OA) of 99.84% on a total number of 116,673 true peaks. Evaluation results further demonstrate the robustness of the ZFR-based method for noisy PPG signals with a signal-to-noise ratio (SNR) ranging from 30 to 5 dB. The method achieves an average Se = 99.76%, Pp = 99.84%, and OA = 99.60% for noisy PPG signals with a SNR of 5 dB. Various results show that the method yields better detection rates for both noise-free and noisy PPG signals. The method is simple and reliable as compared with the complexity of signal processing techniques and detection performance of the existing detection methods.