Cargando…

Detection of focal electroencephalogram signals using higher-order moments in EMD-TKEO domain

Detection of epileptogenic focus based on electroencephalogram (EEG) signal screening is an important pre-surgical step to remove affected regions inside the human brain. Considering the fact above, in this work, a novel technique for detection of focal EEG signals is proposed using a combination of...

Descripción completa

Detalles Bibliográficos
Autor principal: Chatterjee, Soumya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Institution of Engineering and Technology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595538/
https://www.ncbi.nlm.nih.gov/pubmed/31341630
http://dx.doi.org/10.1049/htl.2018.5036
Descripción
Sumario:Detection of epileptogenic focus based on electroencephalogram (EEG) signal screening is an important pre-surgical step to remove affected regions inside the human brain. Considering the fact above, in this work, a novel technique for detection of focal EEG signals is proposed using a combination of empirical mode decomposition (EMD) and Teager–Kaiser energy operator (TKEO). EEG signals belonging to focal (Fo) and non-focal (NFo) groups were at first decomposed into a set of intrinsic mode functions (IMFs) using EMD. Next, TKEO was applied on each IMF and two higher-order statistical moments namely skewness and kurtosis were extracted as features from TKEO of each IMF. The statistical significance of the selected features was evaluated using student's t-test and based on the statistical test, features from first three IMFs which show very high discriminative capability were selected as inputs to a support vector machine classifier for discrimination of Fo and NFo signals. It was observed that the classification accuracy of 92.65% is obtained in classifying EEG signals using a radial basis kernel function, which demonstrates the efficacy of proposed EMD-TKEO based feature extraction method for computer-based treatment of patients suffering from focal seizures.