Cargando…

Abdominal skin tensile strength in aesthetic and massive weight loss patients and its role in ventral hernia repair

BACKGROUND: Clarifying the biomechanics of abdominal skin could lead to different uses for this tissue such as the ventral repair of hernias in patients with excess skin and incisional hernias. The objective of this study was to compare the maximum tensile strength of abdominal skin to commercial me...

Descripción completa

Detalles Bibliográficos
Autores principales: Barreiro, Guilherme, de Lima, Vinícius S., Cavazzola, Leandro T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595693/
https://www.ncbi.nlm.nih.gov/pubmed/31242888
http://dx.doi.org/10.1186/s12893-019-0523-7
Descripción
Sumario:BACKGROUND: Clarifying the biomechanics of abdominal skin could lead to different uses for this tissue such as the ventral repair of hernias in patients with excess skin and incisional hernias. The objective of this study was to compare the maximum tensile strength of abdominal skin to commercial meshes and to verify whether or not it varies between aesthetic patients and massive weight-loss patients. METHODS: Experimental cross-sectional study. Skin samples sized 32 × 20 mm were taken from 15 abdominoplasties and 10 panniculectomies. The skin specimens were analyzed in vertical and horizontal tensile strength tests. Results were compared between the two groups including their traction directions. Commercial meshes were also tested. The results were analyzed using the Generalized Estimating Equation. RESULTS: The maximum tensile strength supported vertically by abdominal dermis was 403.5 ± 27.4 N in the abdominoplasty group and 425.9 ± 33.9 N in the panniculectomy group. Horizontally, the values were 596.5 ± 32.2 N and 612.5 ± 43.9 N respectively. The strengths between traction directions were significantly different (p < 0.001). There were no differences between the groups with regard to the maximum tensile strength (p = 0.472). Tested commercial meshes had the following values: polypropylene 104.6 N, low-weight polypropylene 54.4 N, polytetrafluorethylene (PTFE) 82.2 N, and hydrated porcine small-intestinal submucosa 60.0 N. CONCLUSION: In our study, the tensile strength of the tested human abdominal dermis samples, both aesthetic and post-bariatric, was superior to the commercial meshes. Therefore, in selected cases, abdominal dermis could be an alternative tool in abdominal reconstruction during panniculectomies with concomitant hernia repair. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12893-019-0523-7) contains supplementary material, which is available to authorized users.