Cargando…

High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data

Data present here describe a comparative proteomic analysis among the malignant [primary breast tumor (PT) and axillary metastatic lymph nodes (LN)], and the non-tumor [contralateral (NCT) and adjacent (ANT)] breast tissues. Protein identification and quantification were performed through label-free...

Descripción completa

Detalles Bibliográficos
Autores principales: Gomig, Talita Helen Bombardelli, Cavalli, Iglenir João, Souza, Ricardo Lehtonen Rodrigues de, Lucena, Aline Castro Rodrigues, Batista, Michel, Machado, Kelly Cavalcanti, Marchini, Fabricio Klerynton, Marchi, Fabio Albuquerque, Lima, Rubens Silveira, Urban, Cícero de Andrade, Cavalli, Luciane Regina, Ribeiro, Enilze Maria de Souza Fonseca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595893/
https://www.ncbi.nlm.nih.gov/pubmed/31294064
http://dx.doi.org/10.1016/j.dib.2019.104125
_version_ 1783430478047477760
author Gomig, Talita Helen Bombardelli
Cavalli, Iglenir João
Souza, Ricardo Lehtonen Rodrigues de
Lucena, Aline Castro Rodrigues
Batista, Michel
Machado, Kelly Cavalcanti
Marchini, Fabricio Klerynton
Marchi, Fabio Albuquerque
Lima, Rubens Silveira
Urban, Cícero de Andrade
Cavalli, Luciane Regina
Ribeiro, Enilze Maria de Souza Fonseca
author_facet Gomig, Talita Helen Bombardelli
Cavalli, Iglenir João
Souza, Ricardo Lehtonen Rodrigues de
Lucena, Aline Castro Rodrigues
Batista, Michel
Machado, Kelly Cavalcanti
Marchini, Fabricio Klerynton
Marchi, Fabio Albuquerque
Lima, Rubens Silveira
Urban, Cícero de Andrade
Cavalli, Luciane Regina
Ribeiro, Enilze Maria de Souza Fonseca
author_sort Gomig, Talita Helen Bombardelli
collection PubMed
description Data present here describe a comparative proteomic analysis among the malignant [primary breast tumor (PT) and axillary metastatic lymph nodes (LN)], and the non-tumor [contralateral (NCT) and adjacent (ANT)] breast tissues. Protein identification and quantification were performed through label-free mass spectrometry using a nano-liquid chromatography coupled to an electrospray ionization–mass spectrometry (nLC-ESI-MS/MS). The mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium via PRIDE partner repository with the dataset identifier PXD012431. A total of 462 differentially expressed proteins was identified among these tissues and was analyzed in six groups' comparisons (named NCTxANT, PTxNCT, PTxANT, LNxNCT, LNxANT and PTxLN). Proteins at 1.5 log2 fold change were submitted to the Ingenuity(®) Pathway Analysis (IPA) software version 2.3 (QIAGEN Inc.) to identify biological pathways, disease and function annotation, and interaction networks related to cancer biology. The detailed data present here provides information about the proteome alterations and their role on breast tumorigenesis. This information can lead to novel biological insights on cancer research. For further interpretation of these data, please see our research article ‘Quantitative label-free mass spectrometry using contralateral and adjacent breast tissues reveal differentially expressed proteins and their predicted impacts on pathways and cellular functions in breast cancer’ [2].
format Online
Article
Text
id pubmed-6595893
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-65958932019-07-10 High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data Gomig, Talita Helen Bombardelli Cavalli, Iglenir João Souza, Ricardo Lehtonen Rodrigues de Lucena, Aline Castro Rodrigues Batista, Michel Machado, Kelly Cavalcanti Marchini, Fabricio Klerynton Marchi, Fabio Albuquerque Lima, Rubens Silveira Urban, Cícero de Andrade Cavalli, Luciane Regina Ribeiro, Enilze Maria de Souza Fonseca Data Brief Proteomics Data present here describe a comparative proteomic analysis among the malignant [primary breast tumor (PT) and axillary metastatic lymph nodes (LN)], and the non-tumor [contralateral (NCT) and adjacent (ANT)] breast tissues. Protein identification and quantification were performed through label-free mass spectrometry using a nano-liquid chromatography coupled to an electrospray ionization–mass spectrometry (nLC-ESI-MS/MS). The mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium via PRIDE partner repository with the dataset identifier PXD012431. A total of 462 differentially expressed proteins was identified among these tissues and was analyzed in six groups' comparisons (named NCTxANT, PTxNCT, PTxANT, LNxNCT, LNxANT and PTxLN). Proteins at 1.5 log2 fold change were submitted to the Ingenuity(®) Pathway Analysis (IPA) software version 2.3 (QIAGEN Inc.) to identify biological pathways, disease and function annotation, and interaction networks related to cancer biology. The detailed data present here provides information about the proteome alterations and their role on breast tumorigenesis. This information can lead to novel biological insights on cancer research. For further interpretation of these data, please see our research article ‘Quantitative label-free mass spectrometry using contralateral and adjacent breast tissues reveal differentially expressed proteins and their predicted impacts on pathways and cellular functions in breast cancer’ [2]. Elsevier 2019-06-10 /pmc/articles/PMC6595893/ /pubmed/31294064 http://dx.doi.org/10.1016/j.dib.2019.104125 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Proteomics
Gomig, Talita Helen Bombardelli
Cavalli, Iglenir João
Souza, Ricardo Lehtonen Rodrigues de
Lucena, Aline Castro Rodrigues
Batista, Michel
Machado, Kelly Cavalcanti
Marchini, Fabricio Klerynton
Marchi, Fabio Albuquerque
Lima, Rubens Silveira
Urban, Cícero de Andrade
Cavalli, Luciane Regina
Ribeiro, Enilze Maria de Souza Fonseca
High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data
title High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data
title_full High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data
title_fullStr High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data
title_full_unstemmed High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data
title_short High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data
title_sort high-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data
topic Proteomics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595893/
https://www.ncbi.nlm.nih.gov/pubmed/31294064
http://dx.doi.org/10.1016/j.dib.2019.104125
work_keys_str_mv AT gomigtalitahelenbombardelli highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT cavalliiglenirjoao highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT souzaricardolehtonenrodriguesde highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT lucenaalinecastrorodrigues highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT batistamichel highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT machadokellycavalcanti highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT marchinifabricioklerynton highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT marchifabioalbuquerque highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT limarubenssilveira highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT urbancicerodeandrade highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT cavallilucianeregina highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata
AT ribeiroenilzemariadesouzafonseca highthroughputmassspectrometryandbioinformaticsanalysisofbreastcancerproteomicdata