Cargando…
Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remains a key open question. Here, whisker lesioning, known to dampen cortic...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596419/ https://www.ncbi.nlm.nih.gov/pubmed/31209379 http://dx.doi.org/10.1038/s41593-019-0419-y |
_version_ | 1783430507478908928 |
---|---|
author | Gunner, Georgia Cheadle, Lucas Johnson, Kasey M. Ayata, Pinar Badimon, Ana Mondo, Erica Nagy, M. Aurel Liu, Liwang Bemiller, Shane M. Kim, Ki-Wook Lira, Sergio A. Lamb, Bruce T. Tapper, Andrew R. Ransohoff, Richard M. Greenberg, Michael E. Schaefer, Anne Schafer, Dorothy P. |
author_facet | Gunner, Georgia Cheadle, Lucas Johnson, Kasey M. Ayata, Pinar Badimon, Ana Mondo, Erica Nagy, M. Aurel Liu, Liwang Bemiller, Shane M. Kim, Ki-Wook Lira, Sergio A. Lamb, Bruce T. Tapper, Andrew R. Ransohoff, Richard M. Greenberg, Michael E. Schaefer, Anne Schafer, Dorothy P. |
author_sort | Gunner, Georgia |
collection | PubMed |
description | Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remains a key open question. Here, whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. We show that this synapse elimination is dependent on the microglial fractalkine receptor, CX3CR1, but not complement receptor 3, signaling. Further, mice deficient in the CX3CR1 ligand (CX3CL1) also have profound defects in synapse elimination. Single-cell RNAseq then revealed that Cx3cl1 is cortical neuron-derived and Adam10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and microglia following whisker lesioning. Finally, inhibition of Adam10 phenocopies Cx3cr1(−/−) and Cx3cl1(−/−) synapse elimination defects. Together, these results identify novel neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. |
format | Online Article Text |
id | pubmed-6596419 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-65964192019-12-17 Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling Gunner, Georgia Cheadle, Lucas Johnson, Kasey M. Ayata, Pinar Badimon, Ana Mondo, Erica Nagy, M. Aurel Liu, Liwang Bemiller, Shane M. Kim, Ki-Wook Lira, Sergio A. Lamb, Bruce T. Tapper, Andrew R. Ransohoff, Richard M. Greenberg, Michael E. Schaefer, Anne Schafer, Dorothy P. Nat Neurosci Article Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remains a key open question. Here, whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. We show that this synapse elimination is dependent on the microglial fractalkine receptor, CX3CR1, but not complement receptor 3, signaling. Further, mice deficient in the CX3CR1 ligand (CX3CL1) also have profound defects in synapse elimination. Single-cell RNAseq then revealed that Cx3cl1 is cortical neuron-derived and Adam10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and microglia following whisker lesioning. Finally, inhibition of Adam10 phenocopies Cx3cr1(−/−) and Cx3cl1(−/−) synapse elimination defects. Together, these results identify novel neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. 2019-06-17 2019-07 /pmc/articles/PMC6596419/ /pubmed/31209379 http://dx.doi.org/10.1038/s41593-019-0419-y Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Gunner, Georgia Cheadle, Lucas Johnson, Kasey M. Ayata, Pinar Badimon, Ana Mondo, Erica Nagy, M. Aurel Liu, Liwang Bemiller, Shane M. Kim, Ki-Wook Lira, Sergio A. Lamb, Bruce T. Tapper, Andrew R. Ransohoff, Richard M. Greenberg, Michael E. Schaefer, Anne Schafer, Dorothy P. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling |
title | Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling |
title_full | Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling |
title_fullStr | Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling |
title_full_unstemmed | Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling |
title_short | Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling |
title_sort | sensory lesioning induces microglial synapse elimination via adam10 and fractalkine signaling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596419/ https://www.ncbi.nlm.nih.gov/pubmed/31209379 http://dx.doi.org/10.1038/s41593-019-0419-y |
work_keys_str_mv | AT gunnergeorgia sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT cheadlelucas sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT johnsonkaseym sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT ayatapinar sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT badimonana sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT mondoerica sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT nagymaurel sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT liuliwang sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT bemillershanem sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT kimkiwook sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT lirasergioa sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT lambbrucet sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT tapperandrewr sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT ransohoffrichardm sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT greenbergmichaele sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT schaeferanne sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling AT schaferdorothyp sensorylesioninginducesmicroglialsynapseeliminationviaadam10andfractalkinesignaling |