Cargando…
Application of machine learning techniques to tuberculosis drug resistance analysis
MOTIVATION: Timely identification of Mycobacterium tuberculosis (MTB) resistance to existing drugs is vital to decrease mortality and prevent the amplification of existing antibiotic resistance. Machine learning methods have been widely applied for timely predicting resistance of MTB given a specifi...
Autores principales: | Kouchaki, Samaneh, Yang, Yang, Walker, Timothy M, Sarah Walker, A, Wilson, Daniel J, Peto, Timothy E A, Crook, Derrick W, Clifton, David A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596891/ https://www.ncbi.nlm.nih.gov/pubmed/30462147 http://dx.doi.org/10.1093/bioinformatics/bty949 |
Ejemplares similares
-
Multi-Label Random Forest Model for Tuberculosis Drug Resistance Classification and Mutation Ranking
por: Kouchaki, Samaneh, et al.
Publicado: (2020) -
An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction
por: Yang, Yang, et al.
Publicado: (2021) -
Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data
por: Yang, Yang, et al.
Publicado: (2018) -
DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis
por: Yang, Yang, et al.
Publicado: (2019) -
A crowd of BashTheBug volunteers reproducibly and accurately measure the minimum inhibitory concentrations of 13 antitubercular drugs from photographs of 96-well broth microdilution plates
por: Fowler, Philip W, et al.
Publicado: (2022)