Cargando…
An equivariant Bayesian convolutional network predicts recombination hotspots and accurately resolves binding motifs
MOTIVATION: Convolutional neural networks (CNNs) have been tremendously successful in many contexts, particularly where training data are abundant and signal-to-noise ratios are large. However, when predicting noisily observed phenotypes from DNA sequence, each training instance is only weakly infor...
Autores principales: | Brown, Richard C, Lunter, Gerton |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596897/ https://www.ncbi.nlm.nih.gov/pubmed/30481258 http://dx.doi.org/10.1093/bioinformatics/bty964 |
Ejemplares similares
-
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
por: Batzner, Simon, et al.
Publicado: (2022) -
H-Packer: Holographic Rotationally Equivariant Convolutional Neural
Network for Protein Side-Chain Packing
por: Visani, Gian Marco, et al.
Publicado: (2023) -
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023) -
E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction
por: Roche, Rahmatullah, et al.
Publicado: (2023) -
Accurate Reconstruction of Insertion-Deletion Histories by Statistical Phylogenetics
por: Westesson, Oscar, et al.
Publicado: (2012)