Cargando…

Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the CYR61 Signaling Pathway

BACKGROUND AND OBJECTIVES: Angiotensin II (Ang II) has been suggested to accelerate vascular senescence, however the molecular mechanism(s) remain unknown. METHODS: We cultured human coronary artery smooth muscle cells (hCSMCs) and treated Ang II and/or fimasartan. Or we transfected adenoviral vecto...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Inho, Park, Chan Soon, Lee, Hae-Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Cardiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597448/
https://www.ncbi.nlm.nih.gov/pubmed/31074217
http://dx.doi.org/10.4070/kcj.2018.0379
_version_ 1783430585778176000
author Kim, Inho
Park, Chan Soon
Lee, Hae-Young
author_facet Kim, Inho
Park, Chan Soon
Lee, Hae-Young
author_sort Kim, Inho
collection PubMed
description BACKGROUND AND OBJECTIVES: Angiotensin II (Ang II) has been suggested to accelerate vascular senescence, however the molecular mechanism(s) remain unknown. METHODS: We cultured human coronary artery smooth muscle cells (hCSMCs) and treated Ang II and/or fimasartan. Or we transfected adenoviral vectors expressing CYR61 (Ad-CYR61) or antisense CYR61 (Ad-As-CYR61). Cellular senescence was evaluated senescence-associated β-galactosidase (SA-β-gal) assay. The molecular mechanisms were investigated real-time PCR and western blots. RESULTS: SA-β-gal-positive cells significantly increased in Ang II-treated hCSMCs (5.77±1.43-fold compared with the control). The effect of Ang II was significantly attenuated by pretreatment with the Ang II type 1 receptor blocker, fimasartan (2.00±0.92-fold). The expression of both p53 and p16 senescence regulators was significantly increased by Ang II (p53: 1.39±0.17, p16: 1.19±0.10-fold vs. the control), and inhibited by fimasartan. Cysteine-rich angiogenic protein 61 (CYR61) was rapidly induced by Ang II. Compared with the control, Ad-CYR61-transfected hCSMCs showed significantly increased SA-β-gal-positive cells (3.47±0.65-fold). Upon transfecting Ad-AS-CYR61, Ang II-induced senescence (3.74±0.23-fold) was significantly decreased (1.77±0.60-fold). p53 expression by Ang II was significantly attenuated by Ad-AS-CYR61, whereas p16 expression was not regulated. Ang II activated ERK1/2 and p38 MAPK, which was significantly blocked by fimasartan. ERK and p38 inhibition both regulated Ang II-induced CYR61 expression. However, p53 expression was only regulated by ERK1/2, whereas p16 expression was only attenuated by p38 MAPK. CONCLUSIONS: Ang II induced vascular senescence by the ERK/p38 MAPK–CYR61 pathway and ARB, fimasartan, protected against Ang II-induced vascular senescence.
format Online
Article
Text
id pubmed-6597448
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Korean Society of Cardiology
record_format MEDLINE/PubMed
spelling pubmed-65974482019-07-06 Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the CYR61 Signaling Pathway Kim, Inho Park, Chan Soon Lee, Hae-Young Korean Circ J Original Article BACKGROUND AND OBJECTIVES: Angiotensin II (Ang II) has been suggested to accelerate vascular senescence, however the molecular mechanism(s) remain unknown. METHODS: We cultured human coronary artery smooth muscle cells (hCSMCs) and treated Ang II and/or fimasartan. Or we transfected adenoviral vectors expressing CYR61 (Ad-CYR61) or antisense CYR61 (Ad-As-CYR61). Cellular senescence was evaluated senescence-associated β-galactosidase (SA-β-gal) assay. The molecular mechanisms were investigated real-time PCR and western blots. RESULTS: SA-β-gal-positive cells significantly increased in Ang II-treated hCSMCs (5.77±1.43-fold compared with the control). The effect of Ang II was significantly attenuated by pretreatment with the Ang II type 1 receptor blocker, fimasartan (2.00±0.92-fold). The expression of both p53 and p16 senescence regulators was significantly increased by Ang II (p53: 1.39±0.17, p16: 1.19±0.10-fold vs. the control), and inhibited by fimasartan. Cysteine-rich angiogenic protein 61 (CYR61) was rapidly induced by Ang II. Compared with the control, Ad-CYR61-transfected hCSMCs showed significantly increased SA-β-gal-positive cells (3.47±0.65-fold). Upon transfecting Ad-AS-CYR61, Ang II-induced senescence (3.74±0.23-fold) was significantly decreased (1.77±0.60-fold). p53 expression by Ang II was significantly attenuated by Ad-AS-CYR61, whereas p16 expression was not regulated. Ang II activated ERK1/2 and p38 MAPK, which was significantly blocked by fimasartan. ERK and p38 inhibition both regulated Ang II-induced CYR61 expression. However, p53 expression was only regulated by ERK1/2, whereas p16 expression was only attenuated by p38 MAPK. CONCLUSIONS: Ang II induced vascular senescence by the ERK/p38 MAPK–CYR61 pathway and ARB, fimasartan, protected against Ang II-induced vascular senescence. The Korean Society of Cardiology 2019-03-05 /pmc/articles/PMC6597448/ /pubmed/31074217 http://dx.doi.org/10.4070/kcj.2018.0379 Text en Copyright © 2019. The Korean Society of Cardiology https://creativecommons.org/licenses/by-nc/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Kim, Inho
Park, Chan Soon
Lee, Hae-Young
Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the CYR61 Signaling Pathway
title Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the CYR61 Signaling Pathway
title_full Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the CYR61 Signaling Pathway
title_fullStr Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the CYR61 Signaling Pathway
title_full_unstemmed Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the CYR61 Signaling Pathway
title_short Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the CYR61 Signaling Pathway
title_sort angiotensin ii type 1 receptor blocker, fimasartan, reduces vascular smooth muscle cell senescence by inhibiting the cyr61 signaling pathway
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597448/
https://www.ncbi.nlm.nih.gov/pubmed/31074217
http://dx.doi.org/10.4070/kcj.2018.0379
work_keys_str_mv AT kiminho angiotensiniitype1receptorblockerfimasartanreducesvascularsmoothmusclecellsenescencebyinhibitingthecyr61signalingpathway
AT parkchansoon angiotensiniitype1receptorblockerfimasartanreducesvascularsmoothmusclecellsenescencebyinhibitingthecyr61signalingpathway
AT leehaeyoung angiotensiniitype1receptorblockerfimasartanreducesvascularsmoothmusclecellsenescencebyinhibitingthecyr61signalingpathway