Cargando…
Development and Validation of Deep-Learning Algorithm for Electrocardiography-Based Heart Failure Identification
BACKGROUND AND OBJECTIVES: Screening and early diagnosis for heart failure (HF) are critical. However, conventional screening diagnostic methods have limitations, and electrocardiography (ECG)-based HF identification may be helpful. This study aimed to develop and validate a deep-learning algorithm...
Autores principales: | Kwon, Joon-myoung, Kim, Kyung-Hee, Jeon, Ki-Hyun, Kim, Hyue Mee, Kim, Min Jeong, Lim, Sung-Min, Song, Pil Sang, Park, Jinsik, Choi, Rak Kyeong, Oh, Byung-Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Cardiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597456/ https://www.ncbi.nlm.nih.gov/pubmed/31074221 http://dx.doi.org/10.4070/kcj.2018.0446 |
Ejemplares similares
-
Deep-learning-based risk stratification for mortality of patients with acute myocardial infarction
por: Kwon, Joon-myoung, et al.
Publicado: (2019) -
Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography
por: Kwon, Joon‐Myoung, et al.
Publicado: (2020) -
Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2020) -
High Incidence and Mortality of Out-of-Hospital Cardiac Arrest on Traditional Holiday in South Korea
por: Kwon, Joon-myoung, et al.
Publicado: (2019) -
Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography
por: Cho, Younghoon, et al.
Publicado: (2020)