Cargando…

A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta

Many insects have the capacity to increase their resistance to high temperatures by undergoing heat hardening at nonlethal temperatures. Although this response is well established, its molecular underpinnings have only been investigated in a few species where it seems to relate at least partly to th...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Xinyue, Zhao, Yan, Su, Yun, Wu, Jiajiao, Wang, Ziya, Hu, Juntao, Liu, Lijun, Zhao, Zihua, Hoffmann, Ary A., Chen, Bing, Li, Zhihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597872/
https://www.ncbi.nlm.nih.gov/pubmed/31293628
http://dx.doi.org/10.1111/eva.12793
_version_ 1783430661509480448
author Gu, Xinyue
Zhao, Yan
Su, Yun
Wu, Jiajiao
Wang, Ziya
Hu, Juntao
Liu, Lijun
Zhao, Zihua
Hoffmann, Ary A.
Chen, Bing
Li, Zhihong
author_facet Gu, Xinyue
Zhao, Yan
Su, Yun
Wu, Jiajiao
Wang, Ziya
Hu, Juntao
Liu, Lijun
Zhao, Zihua
Hoffmann, Ary A.
Chen, Bing
Li, Zhihong
author_sort Gu, Xinyue
collection PubMed
description Many insects have the capacity to increase their resistance to high temperatures by undergoing heat hardening at nonlethal temperatures. Although this response is well established, its molecular underpinnings have only been investigated in a few species where it seems to relate at least partly to the expression of heat shock protein (Hsp) genes. Here, we studied the mechanism of hardening and associated transcription responses in larvae of two invasive fruit fly species in China, Bactrocera dorsalis and Bactrocera correcta. Both species showed hardening which increased resistance to 45°C, although the more widespread B. dorsalis hardened better at higher temperatures compared to B. correcta which hardened better at lower temperatures. Transcriptional analyses highlighted expression changes in a number of genes representing different biochemical pathways, but these changes and pathways were inconsistent between the two species. Overall B. dorsalis showed expression changes in more genes than B. correcta. Hsp genes tended to be upregulated at a hardening temperature of 38°C in both species, while at 35°C many Hsp genes tended to be upregulated in B. correcta but not B. dorsalis. One candidate gene (the small heat shock protein gene, Hsp23) with a particularly high level of upregulation was investigated functionally using RNA interference (RNAi). We found that RNAi may be more efficient in B. dorsalis, in which suppression of the expression of this gene removed the hardening response, whereas in B. correcta RNAi did not decrease the hardening response. The different patterns of gene expression in these two species at the two hardening temperatures highlight the diverse mechanisms underlying hardening even in closely related species. These results may provide target genes for future control efforts against such pest species.
format Online
Article
Text
id pubmed-6597872
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-65978722019-07-10 A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta Gu, Xinyue Zhao, Yan Su, Yun Wu, Jiajiao Wang, Ziya Hu, Juntao Liu, Lijun Zhao, Zihua Hoffmann, Ary A. Chen, Bing Li, Zhihong Evol Appl Original Articles Many insects have the capacity to increase their resistance to high temperatures by undergoing heat hardening at nonlethal temperatures. Although this response is well established, its molecular underpinnings have only been investigated in a few species where it seems to relate at least partly to the expression of heat shock protein (Hsp) genes. Here, we studied the mechanism of hardening and associated transcription responses in larvae of two invasive fruit fly species in China, Bactrocera dorsalis and Bactrocera correcta. Both species showed hardening which increased resistance to 45°C, although the more widespread B. dorsalis hardened better at higher temperatures compared to B. correcta which hardened better at lower temperatures. Transcriptional analyses highlighted expression changes in a number of genes representing different biochemical pathways, but these changes and pathways were inconsistent between the two species. Overall B. dorsalis showed expression changes in more genes than B. correcta. Hsp genes tended to be upregulated at a hardening temperature of 38°C in both species, while at 35°C many Hsp genes tended to be upregulated in B. correcta but not B. dorsalis. One candidate gene (the small heat shock protein gene, Hsp23) with a particularly high level of upregulation was investigated functionally using RNA interference (RNAi). We found that RNAi may be more efficient in B. dorsalis, in which suppression of the expression of this gene removed the hardening response, whereas in B. correcta RNAi did not decrease the hardening response. The different patterns of gene expression in these two species at the two hardening temperatures highlight the diverse mechanisms underlying hardening even in closely related species. These results may provide target genes for future control efforts against such pest species. John Wiley and Sons Inc. 2019-04-10 /pmc/articles/PMC6597872/ /pubmed/31293628 http://dx.doi.org/10.1111/eva.12793 Text en © 2019 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Gu, Xinyue
Zhao, Yan
Su, Yun
Wu, Jiajiao
Wang, Ziya
Hu, Juntao
Liu, Lijun
Zhao, Zihua
Hoffmann, Ary A.
Chen, Bing
Li, Zhihong
A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta
title A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta
title_full A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta
title_fullStr A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta
title_full_unstemmed A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta
title_short A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta
title_sort transcriptional and functional analysis of heat hardening in two invasive fruit fly species, bactrocera dorsalis and bactrocera correcta
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597872/
https://www.ncbi.nlm.nih.gov/pubmed/31293628
http://dx.doi.org/10.1111/eva.12793
work_keys_str_mv AT guxinyue atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT zhaoyan atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT suyun atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT wujiajiao atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT wangziya atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT hujuntao atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT liulijun atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT zhaozihua atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT hoffmannarya atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT chenbing atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT lizhihong atranscriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT guxinyue transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT zhaoyan transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT suyun transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT wujiajiao transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT wangziya transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT hujuntao transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT liulijun transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT zhaozihua transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT hoffmannarya transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT chenbing transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta
AT lizhihong transcriptionalandfunctionalanalysisofheathardeningintwoinvasivefruitflyspeciesbactroceradorsalisandbactroceracorrecta