Cargando…
Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks
Fast-growing forest plantations are sustainable feedstocks of plant biomass that can serve as alternatives to fossil carbon resources for materials, chemicals, and energy. Their ability to efficiently harvest light energy and carbon from the atmosphere and sequester this into metabolic precursors fo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597874/ https://www.ncbi.nlm.nih.gov/pubmed/31281326 http://dx.doi.org/10.3389/fpls.2019.00775 |
_version_ | 1783430661986582528 |
---|---|
author | Myburg, Alexander A. Hussey, Steven G. Wang, Jack P. Street, Nathaniel R. Mizrachi, Eshchar |
author_facet | Myburg, Alexander A. Hussey, Steven G. Wang, Jack P. Street, Nathaniel R. Mizrachi, Eshchar |
author_sort | Myburg, Alexander A. |
collection | PubMed |
description | Fast-growing forest plantations are sustainable feedstocks of plant biomass that can serve as alternatives to fossil carbon resources for materials, chemicals, and energy. Their ability to efficiently harvest light energy and carbon from the atmosphere and sequester this into metabolic precursors for lignocellulosic biopolymers and a wide range of plant specialized metabolites make them excellent biochemical production platforms and living biorefineries. Their large sizes have facilitated multi-omics analyses and systems modeling of key biological processes such as lignin biosynthesis in trees. High-throughput ‘omics’ approaches have also been applied in segregating tree populations where genetic variation creates abundant genetic perturbations of system components allowing construction of systems genetics models linking genes and pathways to complex trait variation. With this information in hand, it is now possible to start using synthetic biology and genome editing techniques in a bioengineering approach based on a deeper understanding and rational design of biological parts, devices, and integrated systems. However, the complexity of the biology and interacting components will require investment in big data informatics, machine learning, and intuitive visualization to fully explore multi-dimensional patterns and identify emergent properties of biological systems. Predictive systems models could be tested rapidly through high-throughput synthetic biology approaches and multigene editing. Such a bioengineering paradigm, together with accelerated genomic breeding, will be crucial for the development of a new generation of woody biorefinery crops. |
format | Online Article Text |
id | pubmed-6597874 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65978742019-07-05 Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks Myburg, Alexander A. Hussey, Steven G. Wang, Jack P. Street, Nathaniel R. Mizrachi, Eshchar Front Plant Sci Plant Science Fast-growing forest plantations are sustainable feedstocks of plant biomass that can serve as alternatives to fossil carbon resources for materials, chemicals, and energy. Their ability to efficiently harvest light energy and carbon from the atmosphere and sequester this into metabolic precursors for lignocellulosic biopolymers and a wide range of plant specialized metabolites make them excellent biochemical production platforms and living biorefineries. Their large sizes have facilitated multi-omics analyses and systems modeling of key biological processes such as lignin biosynthesis in trees. High-throughput ‘omics’ approaches have also been applied in segregating tree populations where genetic variation creates abundant genetic perturbations of system components allowing construction of systems genetics models linking genes and pathways to complex trait variation. With this information in hand, it is now possible to start using synthetic biology and genome editing techniques in a bioengineering approach based on a deeper understanding and rational design of biological parts, devices, and integrated systems. However, the complexity of the biology and interacting components will require investment in big data informatics, machine learning, and intuitive visualization to fully explore multi-dimensional patterns and identify emergent properties of biological systems. Predictive systems models could be tested rapidly through high-throughput synthetic biology approaches and multigene editing. Such a bioengineering paradigm, together with accelerated genomic breeding, will be crucial for the development of a new generation of woody biorefinery crops. Frontiers Media S.A. 2019-06-20 /pmc/articles/PMC6597874/ /pubmed/31281326 http://dx.doi.org/10.3389/fpls.2019.00775 Text en Copyright © 2019 Myburg, Hussey, Wang, Street and Mizrachi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Myburg, Alexander A. Hussey, Steven G. Wang, Jack P. Street, Nathaniel R. Mizrachi, Eshchar Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks |
title | Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks |
title_full | Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks |
title_fullStr | Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks |
title_full_unstemmed | Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks |
title_short | Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks |
title_sort | systems and synthetic biology of forest trees: a bioengineering paradigm for woody biomass feedstocks |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597874/ https://www.ncbi.nlm.nih.gov/pubmed/31281326 http://dx.doi.org/10.3389/fpls.2019.00775 |
work_keys_str_mv | AT myburgalexandera systemsandsyntheticbiologyofforesttreesabioengineeringparadigmforwoodybiomassfeedstocks AT husseysteveng systemsandsyntheticbiologyofforesttreesabioengineeringparadigmforwoodybiomassfeedstocks AT wangjackp systemsandsyntheticbiologyofforesttreesabioengineeringparadigmforwoodybiomassfeedstocks AT streetnathanielr systemsandsyntheticbiologyofforesttreesabioengineeringparadigmforwoodybiomassfeedstocks AT mizrachieshchar systemsandsyntheticbiologyofforesttreesabioengineeringparadigmforwoodybiomassfeedstocks |