Cargando…
sEMG-angle estimation using feature engineering techniques for least square support vector machine
In the practical implementation of control of electromyography (sEMG) driven devices, algorithms should recognize the human’s motion from sEMG with fast speed and high accuracy. This study proposes two feature engineering (FE) techniques, namely, feature-vector resampling and time-lag techniques, to...
Autores principales: | Gao, Yongsheng, Luo, Yang, Zhao, Jie, Li, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598017/ https://www.ncbi.nlm.nih.gov/pubmed/31045525 http://dx.doi.org/10.3233/THC-199005 |
Ejemplares similares
-
The Influence of the sEMG Amplitude Estimation Technique on the EMG–Force Relationship
por: Ranaldi, Simone, et al.
Publicado: (2022) -
sEMG feature evaluation for identification of elbow angle resolution in graded arm movement
por: Castro, Maria Claudia F, et al.
Publicado: (2014) -
Optimal strategy of sEMG feature and measurement position for grasp force estimation
por: Wu, Changcheng, et al.
Publicado: (2021) -
Classification of Aggressive Behaviors Based on sEMG Feature Extraction and Machine Learning Algorithm
por: Kim, Youngjun, et al.
Publicado: (2020) -
Single Directional SMO Algorithm for Least Squares Support Vector Machines
por: Shao, Xigao, et al.
Publicado: (2013)