Cargando…
A substrate-independent framework to characterize reservoir computers
The reservoir computing (RC) framework states that any nonlinear, input-driven dynamical system (the reservoir) exhibiting properties such as a fading memory and input separability can be trained to perform computational tasks. This broad inclusion of systems has led to many new physical substrates...
Autores principales: | Dale, Matthew, Miller, Julian F., Stepney, Susan, Trefzer, Martin A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598063/ https://www.ncbi.nlm.nih.gov/pubmed/31293353 http://dx.doi.org/10.1098/rspa.2018.0723 |
Ejemplares similares
-
A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells
por: Greaves, Richard B., et al.
Publicado: (2017) -
Computational matter
por: Stepney, Susan, et al.
Publicado: (2018) -
Unconventional computation and natural computation: 17th international conference, UCNC 2018, Fontainebleau, France, June 25-29, 2018, proceedings
por: Stepney, Susan, et al.
Publicado: (2018) -
When does a physical system compute?
por: Horsman, Clare, et al.
Publicado: (2014) -
Optoelectronic Reservoir Computing
por: Paquot, Y., et al.
Publicado: (2012)