Cargando…

Positioning-Group-Enabled Biocatalytic Oxidative Dearomatization

[Image: see text] Biocatalysts have the potential to perform reactions with exceptional selectivity and high catalytic efficiency while utilizing safe and sustainable reagents. Despite these positive attributes, the utility of a biocatalyst can be limited by the breadth of substrates that can be acc...

Descripción completa

Detalles Bibliográficos
Autores principales: Dockrey, Summer A. Baker, Suh, Carolyn E., Benítez, Attabey Rodríguez, Wymore, Troy, Brooks, Charles L., Narayan, Alison R. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598382/
https://www.ncbi.nlm.nih.gov/pubmed/31263760
http://dx.doi.org/10.1021/acscentsci.9b00163
Descripción
Sumario:[Image: see text] Biocatalysts have the potential to perform reactions with exceptional selectivity and high catalytic efficiency while utilizing safe and sustainable reagents. Despite these positive attributes, the utility of a biocatalyst can be limited by the breadth of substrates that can be accommodated in the active site in a reactive pose. Proven strategies exist for optimizing the performance of a biocatalyst toward unnatural substrates, including protein engineering; however, these methods can be time intensive and require specialized equipment that renders these approaches inaccessible to synthetic chemists. Strategies accessible to chemists for the expansion of a natural enzyme’s substrate scope, while maintaining high levels of site- and stereoselectivity, remain elusive. Here, we employ a computationally guided substrate engineering strategy to expand the synthetic utility of a flavin-dependent monooxygenase. Specifically, experimental observations and computational modeling led to the identification of a critical interaction between the substrate and protein which is responsible for orienting the substrate in a pose productive for catalysis. The fundamental hypothesis for this positioning group strategy is supported by binding and kinetic assays as well as computational studies with a panel of compounds. Further, incorporation of this positioning group into substrates through a cleavable ester linkage transformed compounds not oxidized by the biocatalyst SorbC into substrates efficiently oxidatively dearomatized by the wild-type enzyme with the highest levels of site- and stereoselectivity known for this transformation.