Cargando…
Early Detection of Depression: Social Network Analysis and Random Forest Techniques
BACKGROUND: Major depressive disorder (MDD) or depression is among the most prevalent psychiatric disorders, affecting more than 300 million people globally. Early detection is critical for rapid intervention, which can potentially reduce the escalation of the disorder. OBJECTIVE: This study used da...
Autores principales: | Cacheda, Fidel, Fernandez, Diego, Novoa, Francisco J, Carneiro, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598420/ https://www.ncbi.nlm.nih.gov/pubmed/31199323 http://dx.doi.org/10.2196/12554 |
Ejemplares similares
-
Site Agnostic Approach to Early Detection of Cyberbullying on Social Media Networks
por: López-Vizcaíno, Manuel, et al.
Publicado: (2023) -
Annotated Dataset for Anomaly Detection in a Data Center with IoT Sensors
por: Vigoya, Laura, et al.
Publicado: (2020) -
High Order Profile Expansion to tackle the new user problem on recommender systems
por: Fernández, Diego, et al.
Publicado: (2019) -
Twitter: A Good Place to Detect Health Conditions
por: Prieto, Víctor M., et al.
Publicado: (2014) -
Early Detection of Forest Fire Using Mixed Learning Techniques and UAV
por: Kasyap, Varanasi LVSKB, et al.
Publicado: (2022)