Cargando…
Scalable biclustering — the future of big data exploration?
Biclustering is a technique of discovering local similarities within data. For many years the complexity of the methods and parallelization issues limited its application to big data problems. With the development of novel scalable methods, biclustering has finally started to close this gap. In this...
Autores principales: | Orzechowski, Patryk, Boryczko, Krzysztof, Moore, Jason H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598466/ https://www.ncbi.nlm.nih.gov/pubmed/31251324 http://dx.doi.org/10.1093/gigascience/giz078 |
Ejemplares similares
-
Applied biclustering methods for big and high-dimensional data using R
por: Kasim, Adetayo, et al.
Publicado: (2016) -
Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets
por: Yoon, Sora, et al.
Publicado: (2019) -
Understanding big data scalability
por: Isaacson, Cory
Publicado: (2015) -
A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data
por: Li, Li, et al.
Publicado: (2012) -
A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data
por: Ayadi, Wassim, et al.
Publicado: (2009)