Cargando…
Broadband photoresponse data of transparent all-oxide photovoltaics of ZnO/NiO
In this data article, the properties of all transparent metal oxide of ZnO/NiO heterostructure “Transparent all-oxide photovoltaics and broadband high-speed energy-efficient optoelectronics” [1] are presented by characteristics of ZnO and NiO layers, open circuit voltage decay (OCVD), broadband ligh...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598871/ https://www.ncbi.nlm.nih.gov/pubmed/31297414 http://dx.doi.org/10.1016/j.dib.2019.104095 |
Sumario: | In this data article, the properties of all transparent metal oxide of ZnO/NiO heterostructure “Transparent all-oxide photovoltaics and broadband high-speed energy-efficient optoelectronics” [1] are presented by characteristics of ZnO and NiO layers, open circuit voltage decay (OCVD), broadband light with intensity dependent current-voltage plots. The device performances under the effect of various optical excitation of intermediated-band, bound excitonic, free-excitonic and band-to-band are presented. The ZnO/NiO heterostructure direction grown on ITO/glass substrate by large area sputtering method [1] was characterized by UV–visible plots and scanning electron microscope (SEM). Carrier lifetime using OCVD of ZnO/NiO devices with carbon paint metal contact is presented. Prolonged open circuit voltage plots under UV light intensity are shown for stability and repeatability studies. I–V characteristics of ZnO/NiO heterostructure under the light wavelength from 623 nm to 365 nm are presented for energy efficient broadband optoelectronics. |
---|