Cargando…
Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling
Reinforcement learning (RL) models describe how humans and animals learn by trial-and-error to select actions that maximize rewards and minimize punishments. Traditional RL models focus exclusively on choices, thereby ignoring the interactions between choice preference and response time (RT), or how...
Autores principales: | Fontanesi, Laura, Palminteri, Stefano, Lebreton, Maël |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598978/ https://www.ncbi.nlm.nih.gov/pubmed/31175616 http://dx.doi.org/10.3758/s13415-019-00723-1 |
Ejemplares similares
-
The role of the opioid system in decision making and cognitive control: A review
por: van Steenbergen, Henk, et al.
Publicado: (2019) -
Robust valence-induced biases on motor response and confidence in human reinforcement learning
por: Ting, Chih-Chung, et al.
Publicado: (2020) -
The emotions: facts, theories, and a new model.
por: Plutchik, Robert
Publicado: (1962) -
Vestibular feedback maintains reaching accuracy during body movement
por: Smith, Craig P., et al.
Publicado: (2016) -
Contextual influence on confidence judgments in human reinforcement learning
por: Lebreton, Maël, et al.
Publicado: (2019)