Cargando…

CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites

Precise genome editing/correction of DNA double-strand breaks (DSBs) induced by CRISPR-Cas9 by homology-dependent repair (HDR) is limited by the competing error-prone non-homologous end-joining (NHEJ) DNA repair pathway. Here, we define a safer and efficient system that promotes HDR-based precise ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Jayavaradhan, Rajeswari, Pillis, Devin M., Goodman, Michael, Zhang, Fan, Zhang, Yue, Andreassen, Paul R., Malik, Punam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598984/
https://www.ncbi.nlm.nih.gov/pubmed/31253785
http://dx.doi.org/10.1038/s41467-019-10735-7
Descripción
Sumario:Precise genome editing/correction of DNA double-strand breaks (DSBs) induced by CRISPR-Cas9 by homology-dependent repair (HDR) is limited by the competing error-prone non-homologous end-joining (NHEJ) DNA repair pathway. Here, we define a safer and efficient system that promotes HDR-based precise genome editing, while reducing NHEJ locally, only at CRISPR-Cas9-induced DSBs. We fused a dominant-negative mutant of 53BP1, DN1S, to Cas9 nucleases, and the resulting Cas9-DN1S fusion proteins significantly block NHEJ events specifically at Cas9 cut sites and improve HDR frequency; HDR frequency reached 86% in K562 cells. Cas9-DN1S protein maintains this effect in different human cell types, including leukocyte adhesion deficiency (LAD) patient-derived immortalized B lymphocytes, where nearly 70% of alleles were repaired by HDR and 7% by NHEJ. Our CRISPR-Cas9-DN1S system is clinically relevant to improve the efficiencies of precise gene correction/insertion, significantly reducing error-prone NHEJ events at the nuclease cleavage site, while avoiding the unwanted effects of global NHEJ inhibition.