Cargando…
Stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods
We consider a mathematical model describing the maturation process of stem cells up to fully mature cells. The model is formulated as a differential equation with state-dependent delay, where maturity is described as a continuous variable. The maturation rate of cells may be regulated by the amount...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598990/ https://www.ncbi.nlm.nih.gov/pubmed/31004216 http://dx.doi.org/10.1007/s00285-019-01357-0 |
_version_ | 1783430867655327744 |
---|---|
author | Getto, Philipp Gyllenberg, Mats Nakata, Yukihiko Scarabel, Francesca |
author_facet | Getto, Philipp Gyllenberg, Mats Nakata, Yukihiko Scarabel, Francesca |
author_sort | Getto, Philipp |
collection | PubMed |
description | We consider a mathematical model describing the maturation process of stem cells up to fully mature cells. The model is formulated as a differential equation with state-dependent delay, where maturity is described as a continuous variable. The maturation rate of cells may be regulated by the amount of mature cells and, moreover, it may depend on cell maturity: we investigate how the stability of equilibria is affected by the choice of the maturation rate. We show that the principle of linearised stability holds for this model, and develop some analytical methods for the investigation of characteristic equations for fixed delays. For a general maturation rate we resort to numerical methods and we extend the pseudospectral discretisation technique to approximate the state-dependent delay equation with a system of ordinary differential equations. This is the first application of the technique to nonlinear state-dependent delay equations, and currently the only method available for studying the stability of equilibria by means of established software packages for bifurcation analysis. The numerical method is validated on some cases when the maturation rate is independent of maturity and the model can be reformulated as a fixed-delay equation via a suitable time transformation. We exploit the analytical and numerical methods to investigate the stability boundary in parameter planes. Our study shows some drastic qualitative changes in the stability boundary under assumptions on the model parameters, which may have important biological implications. |
format | Online Article Text |
id | pubmed-6598990 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-65989902019-07-18 Stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods Getto, Philipp Gyllenberg, Mats Nakata, Yukihiko Scarabel, Francesca J Math Biol Article We consider a mathematical model describing the maturation process of stem cells up to fully mature cells. The model is formulated as a differential equation with state-dependent delay, where maturity is described as a continuous variable. The maturation rate of cells may be regulated by the amount of mature cells and, moreover, it may depend on cell maturity: we investigate how the stability of equilibria is affected by the choice of the maturation rate. We show that the principle of linearised stability holds for this model, and develop some analytical methods for the investigation of characteristic equations for fixed delays. For a general maturation rate we resort to numerical methods and we extend the pseudospectral discretisation technique to approximate the state-dependent delay equation with a system of ordinary differential equations. This is the first application of the technique to nonlinear state-dependent delay equations, and currently the only method available for studying the stability of equilibria by means of established software packages for bifurcation analysis. The numerical method is validated on some cases when the maturation rate is independent of maturity and the model can be reformulated as a fixed-delay equation via a suitable time transformation. We exploit the analytical and numerical methods to investigate the stability boundary in parameter planes. Our study shows some drastic qualitative changes in the stability boundary under assumptions on the model parameters, which may have important biological implications. Springer Berlin Heidelberg 2019-04-19 2019 /pmc/articles/PMC6598990/ /pubmed/31004216 http://dx.doi.org/10.1007/s00285-019-01357-0 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Getto, Philipp Gyllenberg, Mats Nakata, Yukihiko Scarabel, Francesca Stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods |
title | Stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods |
title_full | Stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods |
title_fullStr | Stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods |
title_full_unstemmed | Stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods |
title_short | Stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods |
title_sort | stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598990/ https://www.ncbi.nlm.nih.gov/pubmed/31004216 http://dx.doi.org/10.1007/s00285-019-01357-0 |
work_keys_str_mv | AT gettophilipp stabilityanalysisofastatedependentdelaydifferentialequationforcellmaturationanalyticalandnumericalmethods AT gyllenbergmats stabilityanalysisofastatedependentdelaydifferentialequationforcellmaturationanalyticalandnumericalmethods AT nakatayukihiko stabilityanalysisofastatedependentdelaydifferentialequationforcellmaturationanalyticalandnumericalmethods AT scarabelfrancesca stabilityanalysisofastatedependentdelaydifferentialequationforcellmaturationanalyticalandnumericalmethods |