Cargando…

High efficiency perovskite quantum dot solar cells with charge separating heterostructure

Metal halide perovskite semiconductors possess outstanding characteristics for optoelectronic applications including but not limited to photovoltaics. Low-dimensional and nanostructured motifs impart added functionality which can be exploited further. Moreover, wider cation composition tunability an...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Qian, Hazarika, Abhijit, Chen, Xihan, Harvey, Steve P., Larson, Bryon W., Teeter, Glenn R., Liu, Jun, Song, Tao, Xiao, Chuanxiao, Shaw, Liam, Zhang, Minghui, Li, Guoran, Beard, Matthew C., Luther, Joseph M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599010/
https://www.ncbi.nlm.nih.gov/pubmed/31253800
http://dx.doi.org/10.1038/s41467-019-10856-z
_version_ 1783430872348753920
author Zhao, Qian
Hazarika, Abhijit
Chen, Xihan
Harvey, Steve P.
Larson, Bryon W.
Teeter, Glenn R.
Liu, Jun
Song, Tao
Xiao, Chuanxiao
Shaw, Liam
Zhang, Minghui
Li, Guoran
Beard, Matthew C.
Luther, Joseph M.
author_facet Zhao, Qian
Hazarika, Abhijit
Chen, Xihan
Harvey, Steve P.
Larson, Bryon W.
Teeter, Glenn R.
Liu, Jun
Song, Tao
Xiao, Chuanxiao
Shaw, Liam
Zhang, Minghui
Li, Guoran
Beard, Matthew C.
Luther, Joseph M.
author_sort Zhao, Qian
collection PubMed
description Metal halide perovskite semiconductors possess outstanding characteristics for optoelectronic applications including but not limited to photovoltaics. Low-dimensional and nanostructured motifs impart added functionality which can be exploited further. Moreover, wider cation composition tunability and tunable surface ligand properties of colloidal quantum dot (QD) perovskites now enable unprecedented device architectures which differ from thin-film perovskites fabricated from solvated molecular precursors. Here, using layer-by-layer deposition of perovskite QDs, we demonstrate solar cells with abrupt compositional changes throughout the perovskite film. We utilize this ability to abruptly control composition to create an internal heterojunction that facilitates charge separation at the internal interface leading to improved photocarrier harvesting. We show how the photovoltaic performance depends upon the heterojunction position, as well as the composition of each component, and we describe an architecture that greatly improves the performance of perovskite QD photovoltaics.
format Online
Article
Text
id pubmed-6599010
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65990102019-07-01 High efficiency perovskite quantum dot solar cells with charge separating heterostructure Zhao, Qian Hazarika, Abhijit Chen, Xihan Harvey, Steve P. Larson, Bryon W. Teeter, Glenn R. Liu, Jun Song, Tao Xiao, Chuanxiao Shaw, Liam Zhang, Minghui Li, Guoran Beard, Matthew C. Luther, Joseph M. Nat Commun Article Metal halide perovskite semiconductors possess outstanding characteristics for optoelectronic applications including but not limited to photovoltaics. Low-dimensional and nanostructured motifs impart added functionality which can be exploited further. Moreover, wider cation composition tunability and tunable surface ligand properties of colloidal quantum dot (QD) perovskites now enable unprecedented device architectures which differ from thin-film perovskites fabricated from solvated molecular precursors. Here, using layer-by-layer deposition of perovskite QDs, we demonstrate solar cells with abrupt compositional changes throughout the perovskite film. We utilize this ability to abruptly control composition to create an internal heterojunction that facilitates charge separation at the internal interface leading to improved photocarrier harvesting. We show how the photovoltaic performance depends upon the heterojunction position, as well as the composition of each component, and we describe an architecture that greatly improves the performance of perovskite QD photovoltaics. Nature Publishing Group UK 2019-06-28 /pmc/articles/PMC6599010/ /pubmed/31253800 http://dx.doi.org/10.1038/s41467-019-10856-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zhao, Qian
Hazarika, Abhijit
Chen, Xihan
Harvey, Steve P.
Larson, Bryon W.
Teeter, Glenn R.
Liu, Jun
Song, Tao
Xiao, Chuanxiao
Shaw, Liam
Zhang, Minghui
Li, Guoran
Beard, Matthew C.
Luther, Joseph M.
High efficiency perovskite quantum dot solar cells with charge separating heterostructure
title High efficiency perovskite quantum dot solar cells with charge separating heterostructure
title_full High efficiency perovskite quantum dot solar cells with charge separating heterostructure
title_fullStr High efficiency perovskite quantum dot solar cells with charge separating heterostructure
title_full_unstemmed High efficiency perovskite quantum dot solar cells with charge separating heterostructure
title_short High efficiency perovskite quantum dot solar cells with charge separating heterostructure
title_sort high efficiency perovskite quantum dot solar cells with charge separating heterostructure
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599010/
https://www.ncbi.nlm.nih.gov/pubmed/31253800
http://dx.doi.org/10.1038/s41467-019-10856-z
work_keys_str_mv AT zhaoqian highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT hazarikaabhijit highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT chenxihan highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT harveystevep highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT larsonbryonw highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT teeterglennr highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT liujun highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT songtao highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT xiaochuanxiao highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT shawliam highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT zhangminghui highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT liguoran highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT beardmatthewc highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure
AT lutherjosephm highefficiencyperovskitequantumdotsolarcellswithchargeseparatingheterostructure