Cargando…

Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis

The diagnostic yield of exome and genome sequencing remains low (8–70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimiz...

Descripción completa

Detalles Bibliográficos
Autores principales: Deelen, Patrick, van Dam, Sipko, Herkert, Johanna C., Karjalainen, Juha M., Brugge, Harm, Abbott, Kristin M., van Diemen, Cleo C., van der Zwaag, Paul A., Gerkes, Erica H., Zonneveld-Huijssoon, Evelien, Boer-Bergsma, Jelkje J., Folkertsma, Pytrik, Gillett, Tessa, van der Velde, K. Joeri, Kanninga, Roan, van den Akker, Peter C., Jan, Sabrina Z., Hoorntje, Edgar T., te Rijdt, Wouter P., Vos, Yvonne J., Jongbloed, Jan D. H., van Ravenswaaij-Arts, Conny M. A., Sinke, Richard, Sikkema-Raddatz, Birgit, Kerstjens-Frederikse, Wilhelmina S., Swertz, Morris A., Franke, Lude
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599066/
https://www.ncbi.nlm.nih.gov/pubmed/31253775
http://dx.doi.org/10.1038/s41467-019-10649-4
_version_ 1783430885461196800
author Deelen, Patrick
van Dam, Sipko
Herkert, Johanna C.
Karjalainen, Juha M.
Brugge, Harm
Abbott, Kristin M.
van Diemen, Cleo C.
van der Zwaag, Paul A.
Gerkes, Erica H.
Zonneveld-Huijssoon, Evelien
Boer-Bergsma, Jelkje J.
Folkertsma, Pytrik
Gillett, Tessa
van der Velde, K. Joeri
Kanninga, Roan
van den Akker, Peter C.
Jan, Sabrina Z.
Hoorntje, Edgar T.
te Rijdt, Wouter P.
Vos, Yvonne J.
Jongbloed, Jan D. H.
van Ravenswaaij-Arts, Conny M. A.
Sinke, Richard
Sikkema-Raddatz, Birgit
Kerstjens-Frederikse, Wilhelmina S.
Swertz, Morris A.
Franke, Lude
author_facet Deelen, Patrick
van Dam, Sipko
Herkert, Johanna C.
Karjalainen, Juha M.
Brugge, Harm
Abbott, Kristin M.
van Diemen, Cleo C.
van der Zwaag, Paul A.
Gerkes, Erica H.
Zonneveld-Huijssoon, Evelien
Boer-Bergsma, Jelkje J.
Folkertsma, Pytrik
Gillett, Tessa
van der Velde, K. Joeri
Kanninga, Roan
van den Akker, Peter C.
Jan, Sabrina Z.
Hoorntje, Edgar T.
te Rijdt, Wouter P.
Vos, Yvonne J.
Jongbloed, Jan D. H.
van Ravenswaaij-Arts, Conny M. A.
Sinke, Richard
Sikkema-Raddatz, Birgit
Kerstjens-Frederikse, Wilhelmina S.
Swertz, Morris A.
Franke, Lude
author_sort Deelen, Patrick
collection PubMed
description The diagnostic yield of exome and genome sequencing remains low (8–70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that this unbiased method, which does not rely upon specific knowledge on individual genes, is effective in both identifying previously unknown disease gene associations, and flagging genes that have previously been incorrectly implicated in disease. GADO can be run on www.genenetwork.nl by supplying HPO-terms and a list of genes that contain candidate variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases.
format Online
Article
Text
id pubmed-6599066
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65990662019-07-01 Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis Deelen, Patrick van Dam, Sipko Herkert, Johanna C. Karjalainen, Juha M. Brugge, Harm Abbott, Kristin M. van Diemen, Cleo C. van der Zwaag, Paul A. Gerkes, Erica H. Zonneveld-Huijssoon, Evelien Boer-Bergsma, Jelkje J. Folkertsma, Pytrik Gillett, Tessa van der Velde, K. Joeri Kanninga, Roan van den Akker, Peter C. Jan, Sabrina Z. Hoorntje, Edgar T. te Rijdt, Wouter P. Vos, Yvonne J. Jongbloed, Jan D. H. van Ravenswaaij-Arts, Conny M. A. Sinke, Richard Sikkema-Raddatz, Birgit Kerstjens-Frederikse, Wilhelmina S. Swertz, Morris A. Franke, Lude Nat Commun Article The diagnostic yield of exome and genome sequencing remains low (8–70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that this unbiased method, which does not rely upon specific knowledge on individual genes, is effective in both identifying previously unknown disease gene associations, and flagging genes that have previously been incorrectly implicated in disease. GADO can be run on www.genenetwork.nl by supplying HPO-terms and a list of genes that contain candidate variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases. Nature Publishing Group UK 2019-06-28 /pmc/articles/PMC6599066/ /pubmed/31253775 http://dx.doi.org/10.1038/s41467-019-10649-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Deelen, Patrick
van Dam, Sipko
Herkert, Johanna C.
Karjalainen, Juha M.
Brugge, Harm
Abbott, Kristin M.
van Diemen, Cleo C.
van der Zwaag, Paul A.
Gerkes, Erica H.
Zonneveld-Huijssoon, Evelien
Boer-Bergsma, Jelkje J.
Folkertsma, Pytrik
Gillett, Tessa
van der Velde, K. Joeri
Kanninga, Roan
van den Akker, Peter C.
Jan, Sabrina Z.
Hoorntje, Edgar T.
te Rijdt, Wouter P.
Vos, Yvonne J.
Jongbloed, Jan D. H.
van Ravenswaaij-Arts, Conny M. A.
Sinke, Richard
Sikkema-Raddatz, Birgit
Kerstjens-Frederikse, Wilhelmina S.
Swertz, Morris A.
Franke, Lude
Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis
title Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis
title_full Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis
title_fullStr Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis
title_full_unstemmed Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis
title_short Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis
title_sort improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599066/
https://www.ncbi.nlm.nih.gov/pubmed/31253775
http://dx.doi.org/10.1038/s41467-019-10649-4
work_keys_str_mv AT deelenpatrick improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT vandamsipko improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT herkertjohannac improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT karjalainenjuham improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT bruggeharm improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT abbottkristinm improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT vandiemencleoc improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT vanderzwaagpaula improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT gerkesericah improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT zonneveldhuijssoonevelien improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT boerbergsmajelkjej improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT folkertsmapytrik improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT gilletttessa improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT vanderveldekjoeri improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT kanningaroan improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT vandenakkerpeterc improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT jansabrinaz improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT hoorntjeedgart improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT terijdtwouterp improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT vosyvonnej improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT jongbloedjandh improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT vanravenswaaijartsconnyma improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT sinkerichard improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT sikkemaraddatzbirgit improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT kerstjensfrederiksewilhelminas improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT swertzmorrisa improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis
AT frankelude improvingthediagnosticyieldofexomesequencingbypredictinggenephenotypeassociationsusinglargescalegeneexpressionanalysis