Cargando…
JCD-DEA: a joint covariate detection tool for differential expression analysis on tumor expression profiles
BACKGROUND: Differential expression analysis on tumor expression profiles has always been a key issue for subsequent biological experimental validation. It is important how to select features which best discriminate between different groups of patients. Despite the emergence of multivariate analysis...
Autores principales: | Li, Yi, Liu, Yanan, Wu, Yiming, Zhao, Xudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599234/ https://www.ncbi.nlm.nih.gov/pubmed/31253075 http://dx.doi.org/10.1186/s12859-019-2893-3 |
Ejemplares similares
-
JCDSA: a joint covariate detection tool for survival analysis on tumor expression profiles
por: Wu, Yiming, et al.
Publicado: (2018) -
ECFS-DEA: an ensemble classifier-based feature selection for differential expression analysis on expression profiles
por: Zhao, Xudong, et al.
Publicado: (2020) -
PRANA: an R package for differential co-expression network analysis with the presence of additional covariates
por: Ahn, Seungjun, et al.
Publicado: (2023) -
Joint Covariate Detection on Expression Profiles for Selecting Prognostic miRNAs in Glioblastoma
por: Sun, Chengqi, et al.
Publicado: (2017) -
Joint Covariate Detection on Expression Profiles for Identifying MicroRNAs Related to Venous Metastasis in Hepatocellular Carcinoma
por: Zhao, Xudong, et al.
Publicado: (2017)