Cargando…
Transcriptomic and proteomic responses to very low CO(2) suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica
BACKGROUND: In industrial oleaginous microalgae such as Nannochloropsis spp., the key components of the carbon concentration mechanism (CCM) machineries are poorly defined, and how they are mobilized to facilitate cellular utilization of inorganic carbon remains elusive. RESULTS: For Nannochloropsis...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599299/ https://www.ncbi.nlm.nih.gov/pubmed/31297156 http://dx.doi.org/10.1186/s13068-019-1506-8 |
_version_ | 1783430934410821632 |
---|---|
author | Wei, Li El Hajjami, Mohamed Shen, Chen You, Wuxin Lu, Yandu Li, Jing Jing, Xiaoyan Hu, Qiang Zhou, Wenxu Poetsch, Ansgar Xu, Jian |
author_facet | Wei, Li El Hajjami, Mohamed Shen, Chen You, Wuxin Lu, Yandu Li, Jing Jing, Xiaoyan Hu, Qiang Zhou, Wenxu Poetsch, Ansgar Xu, Jian |
author_sort | Wei, Li |
collection | PubMed |
description | BACKGROUND: In industrial oleaginous microalgae such as Nannochloropsis spp., the key components of the carbon concentration mechanism (CCM) machineries are poorly defined, and how they are mobilized to facilitate cellular utilization of inorganic carbon remains elusive. RESULTS: For Nannochloropsis oceanica, to unravel genes specifically induced by CO(2) depletion which are thus potentially underpinning its CCMs, transcriptome, proteome and metabolome profiles were tracked over 0 h, 3 h, 6 h, 12 h and 24 h during cellular response from high CO(2) level (HC; 50,000 ppm) to very low CO(2) (VLC; 100 ppm). The activity of a biophysical CCM is evidenced based on induction of transcripts encoding a bicarbonate transporter and two carbonic anhydrases under VLC. Moreover, the presence of a potential biochemical CCM is supported by the upregulation of a number of key C4-like pathway enzymes in both protein abundance and enzymatic activity under VLC, consistent with a mitochondria-implicated C4-based CCM. Furthermore, a basal CCM underpinned by VLC-induced upregulation of photorespiration and downregulation of ornithine–citrulline shuttle and the ornithine urea cycles is likely present, which may be responsible for efficient recycling of mitochondrial CO(2) for chloroplastic carbon fixation. CONCLUSIONS: Nannochloropsis oceanica appears to mobilize a comprehensive set of CCMs in response to very low CO(2). Its genes induced by the stress are quite distinct from those of Chlamydomonas reinhardtii and Phaeodactylum tricornutum, suggesting tightly regulated yet rather unique CCMs. These findings can serve the first step toward rational engineering of the CCMs for enhanced carbon fixation and biomass productivity in industrial microalgae. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13068-019-1506-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6599299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65992992019-07-11 Transcriptomic and proteomic responses to very low CO(2) suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica Wei, Li El Hajjami, Mohamed Shen, Chen You, Wuxin Lu, Yandu Li, Jing Jing, Xiaoyan Hu, Qiang Zhou, Wenxu Poetsch, Ansgar Xu, Jian Biotechnol Biofuels Research BACKGROUND: In industrial oleaginous microalgae such as Nannochloropsis spp., the key components of the carbon concentration mechanism (CCM) machineries are poorly defined, and how they are mobilized to facilitate cellular utilization of inorganic carbon remains elusive. RESULTS: For Nannochloropsis oceanica, to unravel genes specifically induced by CO(2) depletion which are thus potentially underpinning its CCMs, transcriptome, proteome and metabolome profiles were tracked over 0 h, 3 h, 6 h, 12 h and 24 h during cellular response from high CO(2) level (HC; 50,000 ppm) to very low CO(2) (VLC; 100 ppm). The activity of a biophysical CCM is evidenced based on induction of transcripts encoding a bicarbonate transporter and two carbonic anhydrases under VLC. Moreover, the presence of a potential biochemical CCM is supported by the upregulation of a number of key C4-like pathway enzymes in both protein abundance and enzymatic activity under VLC, consistent with a mitochondria-implicated C4-based CCM. Furthermore, a basal CCM underpinned by VLC-induced upregulation of photorespiration and downregulation of ornithine–citrulline shuttle and the ornithine urea cycles is likely present, which may be responsible for efficient recycling of mitochondrial CO(2) for chloroplastic carbon fixation. CONCLUSIONS: Nannochloropsis oceanica appears to mobilize a comprehensive set of CCMs in response to very low CO(2). Its genes induced by the stress are quite distinct from those of Chlamydomonas reinhardtii and Phaeodactylum tricornutum, suggesting tightly regulated yet rather unique CCMs. These findings can serve the first step toward rational engineering of the CCMs for enhanced carbon fixation and biomass productivity in industrial microalgae. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13068-019-1506-8) contains supplementary material, which is available to authorized users. BioMed Central 2019-06-28 /pmc/articles/PMC6599299/ /pubmed/31297156 http://dx.doi.org/10.1186/s13068-019-1506-8 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Wei, Li El Hajjami, Mohamed Shen, Chen You, Wuxin Lu, Yandu Li, Jing Jing, Xiaoyan Hu, Qiang Zhou, Wenxu Poetsch, Ansgar Xu, Jian Transcriptomic and proteomic responses to very low CO(2) suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica |
title | Transcriptomic and proteomic responses to very low CO(2) suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica |
title_full | Transcriptomic and proteomic responses to very low CO(2) suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica |
title_fullStr | Transcriptomic and proteomic responses to very low CO(2) suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica |
title_full_unstemmed | Transcriptomic and proteomic responses to very low CO(2) suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica |
title_short | Transcriptomic and proteomic responses to very low CO(2) suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica |
title_sort | transcriptomic and proteomic responses to very low co(2) suggest multiple carbon concentrating mechanisms in nannochloropsis oceanica |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599299/ https://www.ncbi.nlm.nih.gov/pubmed/31297156 http://dx.doi.org/10.1186/s13068-019-1506-8 |
work_keys_str_mv | AT weili transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT elhajjamimohamed transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT shenchen transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT youwuxin transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT luyandu transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT lijing transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT jingxiaoyan transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT huqiang transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT zhouwenxu transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT poetschansgar transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica AT xujian transcriptomicandproteomicresponsestoverylowco2suggestmultiplecarbonconcentratingmechanismsinnannochloropsisoceanica |