Cargando…

Spectral tracing of deuterium for imaging glucose metabolism

Cells and tissues often display pronounced spatial and dynamical metabolic heterogeneity. Prevalent glucose-imaging techniques report glucose uptake or catabolism activity, yet do not trace the functional utilization of glucose-derived anabolic products. Here, we report a microscopy technique for th...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Luyuan, Shi, Lingyan, Shen, Yihui, Miao, Yupeng, Wei, Mian, Qian, Naixin, Liu, Yinong, Min, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599680/
https://www.ncbi.nlm.nih.gov/pubmed/31036888
http://dx.doi.org/10.1038/s41551-019-0393-4
Descripción
Sumario:Cells and tissues often display pronounced spatial and dynamical metabolic heterogeneity. Prevalent glucose-imaging techniques report glucose uptake or catabolism activity, yet do not trace the functional utilization of glucose-derived anabolic products. Here, we report a microscopy technique for the optical imaging, via the spectral tracing of deuterium (referred to as STRIDE), of diverse macromolecules derived from glucose. Based on stimulated-Raman-scattering imaging, STRIDE visualizes the metabolic dynamics of newly synthesized macromolecules, such as DNA, protein, lipids and glycogen, via the enrichment and distinct spectra of carbon–deuterium bonds transferred from the deuterated glucose precursor. STRIDE can also use spectral differences derived from different glucose isotopologues to visualize temporally separated glucose populations in a pulse–chase manner. We also show that STRIDE can be used to image glucose metabolism in many mouse tissues, including tumours, the brain, the intestine and the liver, at a detection limit of 10 mM of carbon–deuterium bonds. STRIDE provides a high-resolution and chemically informative assessment of glucose anabolic utilization.